hd44780 lcd module factory
ERM1602FS-3 is 16 characters wide,2 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with white color included can be dimmed easily with a resistor or PWM,fstn-lcd positive,black text on the white color,high contrast,wide operating temperature range,wide view angle,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.
NMLCD-M162A-0is 1602 blue lcd module hd44780 16x2 displays characters, blue text on blue background, equivalent controller, wide temp, low cost, fast delivery.
Answer: For the segment type LCD module, if you need to modify the outline size or display content, we will start the drawing paper for your checking.
Modern Character LCD display modules have been possible since 1987 when Hitachi introduced the HD44780 LCD controller. Since then, Hitachi no longer manufactures this integrated circuit (IC), but modern LCD controller ICs make it a point to be HD44780-compatible.
The character LCD display modules offered by Crystalfontz America Inc. are no exception to this compatibility standard. This assures backwards compatibility with existing product infrastructure for our customers.
From time to time, we are asked to find a suitable replacement for an older LCD display. When our customer sent us the just-barely functional display in question to help verify we did have a compatible display we were delighted (in only the way Engineers can get delighted) that the old display had an old-school HD44780 controller.
Since the display was operational, we were able to find a suitable replacement for our customer. A few modifications were necessary to drive the backlight properly in the device the display is for, but otherwise, the display was functionally the same, thanks to the HD44780 compatible controller.
This gave us an opportunity to see the changes in how Character LCD displays are manufactured and assembled. The controller and drivers ICs are no longer discreet IC — they are bonded to the PCB and then covered with ‘blobs” to protect them. (Learn more about blobs on LCDs.) The improvements in PCB layout, design, and manufacturing are very apparent.
We invite you to contact our helpful customer support team via chat, phone, or email — to see what display will best suit your needs or answer any questions our LCD, TFT, and OLED modules.
On most LCD screens there is no calibration at all. As the background LED is manufactured by a one manufacturer, the LCD manufacturer (just the LED panel without back-light) is generated by another. Since the LCD manufacturer doesn"t know which LEDs are going to be used, pre-calibration is impossible.
Even if you do find an LCD panel that has a built in driver that support calibration (3x4 matrix, 2D functions or even a 3D LUT engine) you should generate the calibration data with a colorimator (like x-rite or spyder). Doing this by the naked eye is quite hard (impossible??)
Character LCDs provide a project with a compact, easy-to-read display for basic textual information. The most common type of character LCD available to developers ship on a circuit board which also contains a Hitachi HD44780 controller chip or one of a number of controllers that are compatible with the Hitachi device, such as the Seiko-Epson SED1278. The HD44780 is now the de facto standard for character LCD controllers.
The HD44780 connects to the outside world across a standard 14-pin interface. Most LCDs come with 16 pins — the extra two, usually marked A and K, are used to access the display’s backlight anode and cathode connections, and are optional. The full set of 16 pins is:
The HD44780 supports displays ranging from one line of eight characters (8 x 1) to four lines of 40 characters (40 x 4), and you can easily find displays of these dimensions and any in between, including the very commonplace 16 x 2 and 20 x 4 sizes. Each HD44780 is designed to support up to 8 x 2, ie. 16 characters, so displays with greater dimensions use two, three or four controllers, all connected through a single 14-pin bus. Each HD44780 is smart enough to co-operate with the others so that you don’t have to worry about which particular one your imp is talking to.
Fourteen pins can present something of a challenge when it comes to hooking up a character LCD to imps with a low number of GPIO pins, such as the imp001. The HD44780 has a 4-bit mode which means you can dispense with four of the eight data pins, but that still leaves seven pins required for data and an eighth if you want to set the display contrast dynamically.
Fortunately, you can use one of the various backpack boards designed to bridge the HD44780’s 14-pin bus (and the two backlight pins) to either I²C or SPI. I²C is particularly good for imp applications because it requires only two pins at the imp end of the bus.
Adafruit’s I²C/SPI backpack is a good choice. It can handle character LCDs with display dimensions from 8 x 1 to 20 x 4 and only adds around $10 to the price of a project. It is sold separately from the LCD itself, giving you scope to choose exactly the display you prefer, and it includes circuitry to manage the display contrast, which is controlled from a variable resistor on the board itself.
There is one criterion when it comes to choosing a character LCD: its operating voltage. This has to be correct for imp operation, which means the display must operate at 3 or 3.3V. Most of the character LCDs on the market are designed to operate at 5V and these are not suitable for connecting directly to an imp without some form of level adjustment. Though the selection of said screens isn’t as broad as it is for 5V devices, you should be able to find a 3.3V display that meets your needs.
Writing to the HD44780 — and thus the LCD — involves choosing one of the chip’s two registers, Command and Data, which is done by setting the RS pin high or low, respectively. Next set the RW pin low to indicate a write, put the data byte’s bit values on the data pins, and set E to high to tell the chip to process the data. When the HD44780 has had time to do so, you end the process by setting E low. The HD44780 datasheet tells you how long all key tasks take to complete so you know how long to wait before setting E low.
The HD44780 is pre-programmed with all the standard Ascii characters. It also provides eight user-definable characters that you can use to add symbols that are either absent from the controller’s characters — the degrees sign, for instance — or which are unique to your application, such as weather icons. The HD44780 reserves a block of RAM for the user-definable characters, so they won’t be preserved when the controller is power-cycled. However, it does mean you can change any of the characters on the fly, giving you an effectively infinite set of characters to work with.
Electric Imp’s GitHub repo contains a Squirrel class for working with character LCDs connected via Adafruit’s I²C/SPI backpack. The class, CHARLCD, is instantiated with the imp I²C bus to which the display is connected and the backpack’s I²C address, which defaults to 0x20 but can be changed by bridging a series of pads on the back of the board. The new CHARLCD object must then be initialized, using the init() function, with the dimensions of the LCD: the number of characters and the number of rows. For example:
The class provides functions to print characters and strings, set the print position to a chosen row and column, to center text on the screen, to switch the backlight on or off, and to define characters. The HD44780 supports broader functionality: to set a static or blinking cursor, to set the type of cursor (underline or block) and to handle scrolling, for example. Details of these and other features can be found in the controller’s datasheet.