1.8 inch tft lcd module datasheet quotation
ER-TFTM018-2 is 128x160 dots 1.8" color tft lcd display with ILI9163 controller and breakoutboard,optional power supply for 3.3V or 5V and optional 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for1.8"TFT LCD Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno. For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code andDevelopment Kitat the bottom of this page.
Note: ILI9163C Datasheets improperly (not traditional) refer to SPI as a Serial Interface. Please see timing diagram in 6.2.1 called "3-line Serial Interface Protocol"
The DT018ATFT does not support 4-Wire SPI (also known as "4-line Serial Interface Protocol", 8-bit data, which includes a separate D/C signal line). DT018ATFT does not support this since the signal in ILI9163C datasheet called "SPI4" is hard coded to 0. However, a custom version of the FPC can be tooled to expose the proper 4-Wire SPI signals - please contact us for more details.
This 128x160 resolution LCD TFT is a standard display with 8-bit Parallel interface and offers a 6:00 optimal view. This 2.8V Liquid Crystal Display has a built-in ILI9163V controller, FFC connection, is RoHS compliant and has a 4-wire resistive touchscreen.
This lovely little display breakout is the best way to add a small, colourful and bright display to any project.Since the 1.8 Inch TFT LCD Module display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!
The 1.8 display has 128160 colour pixels. Unlike the low cost Nokia 6110 and similar LCD displays, which are CSTN type and thus have poor colour and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-bit colour (262,144 shades!).
The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as an ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic.
Features :1.8-inch serial SPI colour display moduleSupport analogue SPI and hardware SPIThe LCD has a wide viewing angle, the contrast is also very suitable.Good quality display.
You can use TFT displays in HMI products such as room temperature controllers and attendance systems, weather monitoring devices, infotainment systems, and even video game consoles.
Let us see a view of a TFT LCD module. In the following section, we will see the pin definition and the pin mapping table for the connection between Arduino and the TFT display.
A0 / DCData Command Select Pin / Analog PinMost of the time, you have to find the relevant termination needed from the LCD datasheet. Terminate this pin to Logic high using a 10 ㏀
There is a tradeoff between the quality of the display, power consumption, and the simplicity of coding. The TFT displays consume more power and need more programming than a simple monochrome display.
TFT displays provide a faster refresh rate and provide smoother transitions. The quicker processing improves the look and feels of the so-called user experience for the user.
I am confident that the article was beneficial and easy to understand. I have used TFT displays in my hobby projects to learn more about the available libraries.
Based on this LCD’s ultra-high resolution and high brightness, it is particularly suitable for advanced applications such as smart watches, smart homes and digital products.
Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735 colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.
The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.
Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:
We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.
We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.
The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.
Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.
This TFT kit comprises one of our smallest TFT displays and an adapter board that breaks the tail connections out to a simple 2x5 10-position header. The adapter board includes a backlight driver, so only a single 3.3v power input is required to bring up the display.
Alibaba.com offers 1,858 1.8 color tft products. such as datasheet. You can also choose from original manufacturer, odm, and retailer. As well as from tft, ips, and lcm.
PS9817A-2-AX : High Speed Optocouplers Digital Die Shrnk HI CMRR 2CH HI Perf. s: Manufacturer: CEL ; Product Category: High Speed Optocouplers ; RoHS: Details ; Configuration: 2 Channel ; Maximum Baud Rate: 10 MBps ; Maximum Forward Diode Voltage: 1.8 V ; Maximum Reverse Diode Voltage: 5 V ; Maximum Input Diode Current: 12.5 mA ; Maximum Power Dissipation: 40 mW ; Maximum.
NHD-2.8-25664UCB2 : OLED Displays OLED 256 x 64 Blue 85 x 39.8 x 6.0. Newhaven Display Graphic OLED Display Modules are Organic Light Emitting Diodes which are brighter, higher contrast displays that have faster response times, wider viewing angles, and consume less power than conventional VFD, LED, or LCD Displays. OLED displays are self-illuminating and require no backlight.
NHD-320240WG-BOTML-VZ#030 : Display Modules - LCD, OLED, Graphic; LCD MOD GRAPH 320X240 WH TRANSM. s: Display Type: LCD - Monochrome ; Display Mode: Transmissive ; Backlight: LED - White ; Dot Size: 0.34mm W x 0.34mm H ; Viewing Area: 122.00mm L x 92.00mm W ; Dot Pixels: 320 x 240 (QVGA) ; Dot Pitch: 0.36mm x 0.36mm ; Interface: - ; Lead Free Status: Lead Free ; RoHS Status: RoHS.
The 1.8inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for reference only, and the actual color shall prevail.)
ST7735S is a 132*162 pixel LCD, and this product is a 128*160 pixel LCD, so some processing has been done on the display: the display starts from the second pixel in the horizontal direction, and the first pixel in the vertical direction. Start to display, so as to ensure that the position corresponding to the RAM in the LCD is consistent with the actual position when displayed.
The LCD supports 12-bit, 16-bit and 18-bit input color formats per pixel, namely RGB444, RGB565, RGB666 three color formats, this routine uses RGB565 color format, which is also a commonly used RGB format
2. The module_init() function is automatically called in the INIT () initializer on the LCD, but the module_exit() function needs to be called by itself
Python has an image library PIL official library link, it do not need to write code from the logical layer like C, can directly call to the image library for image processing. The following will take 1.54inch LCD as an example, we provide a brief description for the demo.
The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font color. You can directly make fill = "WHITE", because the regular color value is already defined Well, of course, you can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the font color is white.
The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory, and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.
image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array through Img2Lcd (downloadable in the development data).