27 widescreen led backlit lcd monitors free sample
* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.
*Expedited Delivery: * Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers subject to change, not combinable with all other offers. See Dell.com/rewardsfaq.
* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.
*Expedited Delivery: * Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers subject to change, not combinable with all other offers. See Dell.com/rewardsfaq.
An LED-backlit LCD is a liquid-crystal display that uses LEDs for backlighting instead of traditional cold cathode fluorescent (CCFL) backlighting.TFT LCD (thin-film-transistor liquid-crystal display) technologies as CCFL-backlit LCDs, but offer a variety of advantages over them.
While not an LED display, a television using such a combination of an LED backlight with an LCD panel is advertised as an LED TV by some manufacturers and suppliers.
A 2016 study by the University of California (Berkeley) suggests that the subjectively perceived visual enhancement with common contrast source material levels off at about 60 LCD local dimming zones.
LED-backlit LCDs are not self-illuminating (unlike pure-LED systems). There are several methods of backlighting an LCD panel using LEDs, including the use of either white or RGB (Red, Green, and Blue) LED arrays behind the panel and edge-LED lighting (which uses white LEDs around the inside frame of the TV and a light-diffusion panel to spread the light evenly behind the LCD panel). Variations in LED backlighting offer different benefits. The first commercial full-array LED-backlit LCD TV was the Sony Qualia 005 (introduced in 2004), which used RGB LED arrays to produce a color gamut about twice that of a conventional CCFL LCD television. This was possible because red, green and blue LEDs have sharp spectral peaks which (combined with the LCD panel filters) result in significantly less bleed-through to adjacent color channels. Unwanted bleed-through channels do not "whiten" the desired color as much, resulting in a larger gamut. RGB LED technology continues to be used on Sony BRAVIA LCD models. LED backlighting using white LEDs produces a broader spectrum source feeding the individual LCD panel filters (similar to CCFL sources), resulting in a more limited display gamut than RGB LEDs at lower cost.
Using PWM (pulse-width modulation), a technology where the intensity of the LEDs are kept constant but the brightness adjustment is achieved by varying a time interval of flashing these constant light intensity light sources,
A first dynamic "local dimming" LED backlight was public demonstrated by BrightSide Technologies in 2003,Sony in September 2008 on the 40-inch (1,000 mm) BRAVIA KLV-40ZX1M (known as the ZX1 in Europe). Edge-LED lighting for LCDs allows thinner housing; the Sony BRAVIA KLV-40ZX1M is 1 cm thick, and others are also extremely thin.
LED-backlit LCDs have longer life and better energy efficiency than plasma and CCFL LCD TVs.mercury, an environmental pollutant, in their manufacture. However, other elements (such as gallium and arsenic) are used in the manufacture of the LED emitters; there is debate over whether they are a better long-term solution to the problem of screen disposal.
Because LEDs can be switched on and off more quickly than CCFLs and can offer a higher light output, it is theoretically possible to offer very high contrast ratios. They can produce deep blacks (LEDs off) and high brightness (LEDs on). However, measurements made from pure-black and pure-white outputs are complicated by edge-LED lighting not allowing these outputs to be reproduced simultaneously on screen.
Quantum dots are photoluminescent; they are useful in displays because they emit light in specific, narrow normal distributions of wavelengths. To generate white light best suited as an LCD backlight, parts of the light of a blue-emitting LED are transformed by quantum dots into small-bandwidth green and red light such that the combined white light allows a nearly ideal color gamut to be generated by the RGB color filters of the LCD panel. In addition, efficiency is improved, as intermediate colors are no longer present and do not have to be filtered out by the color filters of the LCD screen. This can result in a display that more accurately renders colors in the visible spectrum. Companies developing quantum dot solutions for displays include Nanosys, 3M as a licensee of Nanosys, QD Vision of Lexington, Massachusetts, US and Avantama of Switzerland.Consumer Electronics Show 2015.quantum dot displays at CES 2017 and later formed the "QLED Alliance" with Hisense and TCL to market the technology.
Mini LED displays are LED-backlit LCDs with mini-LED–based backlighting supporting over a thousand full array local dimming (FALD) zones, providing deeper blacks and a higher contrast ratio.
LED backlights are often dimmed by applying pulse-width modulation to the supply current, switching the backlight off and on more quickly than the eye can perceive. If the dimming-pulse frequency is too low or the user is sensitive to flicker, this may cause discomfort and eyestrain similar to the flicker of CRT displays at lower refresh rates.
Competing display technologies for the best image performance; A.J.S.M. de Vaan; Journal of the society of information displays, Volume 15, Issue 9 September 2007 Pages 657–666; http://onlinelibrary.wiley.com/doi/10.1889/1.2785199/abstract?
Novitsky, Tom; Abbott, Bill (12 November 2007). "Driving LEDs versus CCFLs for LCD backlighting". EE Times. Archived from the original on 28 November 2010. Retrieved 21 November 2020.
LED TVs: 10 things you need to know; David Carnoy, David Katzmaier; CNET.com/news; 3 June 2010; https://www.cnet.com/news/led-tvs-10-things-you-need-to-know/
LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived 1 August 2017 at the Wayback Machine
Polarisation-sensitive beam splitter; D.J. Broer; A.J.S.M. de Vaan; J. Brambring; European patent EP0428213B1; 27 July 1994; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0428213B1&KC=B1&FT=D#
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Below you can see what the 170Hz flicker looks like on the Gigabyte M27Q, and compare it to its backlight when the BFI feature is disabled and flicker-free. You can see that when there"s a dip in the graph, that"s when the backlight is off.
We also take a photo of the same moving object as our Response Time test, but with BFI enabled, to see what it looks like. While this doesn"t give a complete picture, it helps us see if there"s any image duplication. Below you can see two examples of what a BFI feature can look like when it"s good and bad. The Samsung Odyssey Neo G9 does a good job at reducing persistence blur, and the image looks good with BFI enabled.
The BFI feature on the Samsung monitor helps improve the appearance of motion, and it certainly doesn"t make the appearance of motion look worse. That isn"t the case with the HP X27q, though, as there"s noticeable image duplication when you enable the BFI.
The Maximum Frequency is the highest frequency the BFI feature is capable of operating at. It"s common for monitors to have a BFI frequency slightly below their maximum refresh rate or even at the max refresh rate. The optimal result in this test is a maximum BFI frequency that matches the screen"s maximum refresh rate, so you can use the feature when you"re playing games at a high frame rate.
The Minimum Frequency is the lowest refresh rate at which the feature can be enabled. It"s useful for users who want to use this feature with console games that have low frame rates. The theoretical best value is 1Hz, but a flicker that low tends to be noticeable and distracting. Monitors with a wide range between their minimum and maximum brightness are ideal because they"re great for different types of users and games.
A longer pulse width results in higher peak brightness because the backlight is on for longer. We measure the brightness with the pulse phase at its longest. This measurement is important if you game in a well-lit room or if you don"t like dark displays and want the monitor to get bright. Many monitors don"t have a customizable pulse width control, but we still take the measurement, and the Longest Pulse Width Brightness and Shortest Pulse Width Brightness are the same on those monitors.
The Shortest Pulse Width Brightness is the brightness of the display with the pulse width at its minimum level. For monitors that don"t have a customizable pulse width control, this measurement is just the same as the Longest Pulse Width Brightness. If it has a customizable pulse width control, the brightness tends to be very low, to the point where the screen is dark, but a shorter pulse width also helps improve the appearance of motion.
As mentioned above, some monitors have the option to control the pulse width, which essentially controls how often the backlight is flickering. A shorter pulse width helps reduce persistence blur, but it results in a darker image, while a longer pulse width results in a brighter image, but motion may not look as good.
You can see an example of this below with the AOC CQ27G2. On the left is the BFI setting at its lowest of "1", and as you increase the settings, the pulse width becomes smaller to minimize the time the object is on the screen for. You can see at the max setting, "Boost", that motion is a lot clearer, even if there"s still some image duplication due to the timing being off.
While the pulse width controls the length of each pulse, the phase controls the timing. If the timing of the BFI feature, there"s noticeable image duplication which can get distracting. Adjusting the phase allows you to precisely control when each phase occurs, to eliminate the amount of strobe crosstalk, and eliminate this double image. As important as this feature is, there are also very few monitors that support it. Below you can see what bad timing looks like on the left versus good timing on the right.
The pulse amplitude control is similar to the pulse width control because it allows you to control the intensity of the backlight. In order words, this allows you to change the brightness setting on the display. Instead of increasing the pulse width, which is another way to increase the brightness, this feature just raises the intensity of the backlight. Many monitors disable the brightness setting with BFI enabled, but some allow you to change it.
Many monitors don"t allow their BFI feature to work at the same time as VRR, likely because it"s difficult to adjust the backlight flicker according to the refresh rate when it"s fluctuating. It"s important if you play games with VRR enabled and like to use the BFI feature. Unfortunately, most monitors don"t allow both to work at the same time, and the ones that do are mainly from ASUS and Gigabyte.
Backlight strobing features on LED monitors and black frame insertion on OLED displays aim to reduce the persistence blur that our eyes see by introducing flicker or black frames. Monitors implement this feature in different ways, and our tests aim to look at the customization of it and to see at which refresh rates it works. We also measure the brightness of the display with the feature enabled and if it can work at the same time as VRR. While this feature helps improve the appearance of motion, many monitors don"t have a good implementation of it, so don"t buy a monitor just because it has a BFI feature.
Manufacturers implement different techniques of pulse width modulation, but one of the more common techniques is shortening the duty cycle. The duty cycle refers to the amount of time the pulse is sent for, and shortening the duty cycle reduces the intensity. Below are two examples from TVs that use different types of PWM, but the same techniques are applied with monitors that use PWM. You can see with the LG that the backlight flickers at all brightness levels, and the difference between the 100%, 50%, and 0% luminosity is the duty cycle. The backlight stays on for less time as you decrease the brightness. The Vizio starts to flicker at lower brightness levels with a short duty cycle, and by the time it reaches 0%, the cycle is almost 0.
We test the flicker on TVs similar to monitors, but on TVs, we also check to see which backlight setting the flicker starts at. We don"t do that for monitors. You can use the test above to see when the flicker starts exactly.
This test is meant for LED-backlit displays and not OLEDs because they don"t have a backlight. Still, OLED monitors get a perfect 10 because they don"t have any flicker.
LED-backlit monitors have a backlight to display an image on the screen. Sometimes, these monitors will use a technique called pulse width modulation in order to dim the backlight, where it sends short impulses, creating a flicker effect. We want to know which monitors do this and at which frequencies the backlight flickers. Most monitors we"ve tested are completely flicker-free, but there are a few that flicker. Introducing flicker can help with the appearance of motion but may also create eye strain, so having a monitor that flickers or not is entirely up to you.
LG takes pride as the leading provider of innovative, flexible and feature-packed Commercial Display Products in the market. Boasting the cutting-edge features and modern design, LG Commercial Displays redefines a whole new way of delivering an ultimate viewing experience to enhance engagement with the audience. From Ultra UD OLED monitors for a digital signage network to hospitality TVs for in-room entertainment solutions, LG Commercial Displays offer a variety of display products to meet the demands of every business environment including:
Commercial TVs: Designed with industry-specific features to deliver customized content to entertain your clients. From advanced commercial LED TVs to affordable LG SuperSign TVs, explore our wide variety of options that will fit your display needs.
Digital Signage: Raise your sales with LG Digital Signage and discover our collection of LED Backlit Displays, DS Media Players, Stretch and Touch Screen Displays. Our digital signage displays are available in different sizes and specifications to match the requirements of your business.
Monitor & TV Accessories: Install your display TVs and monitors with genuine and easy-to-use TV wall mounts and stands for an enhanced viewing experience.
If you"re in the market for portability, or if you are looking to create a Raspberry Pi-friendly computer, a portable 14-inch LCD monitor can be very useful. These monitors are smaller than a full-sized PC monitor but have more screen space than some laptops, which makes them great for mobile computing. Additionally, if you need HD performance, a good 14-inch monitor will look better due to having more pixels in a smaller space.Outside of computing, what else can a 14-inch monitor do?
Since these monitors are so portable and versatile, you can use one of these 14-inch LCD monitors for a wide array of uses. These include:Video monitor: If you want to keep up with your little one"s needs, you can use one of these to take a look into their room from time to time - you"ll just need a camera.
Video console gaming: These also serve as great portable monitors for those that take their gaming consoles with them. All you"ll need is a 14-inch monitor with HDMI connectivity.
Security display: These also can work as a 14-inch monitor LCD that links via HDMI to a closed circuit camera monitoring system.How do these small monitor HDMI models stand up?
These mini computer monitors have a few systems that enable them to stand. Some of them have standard computer stands that allow them to be placed on most surfaces, and others have folding "feet" that tuck in when you want to carry these 14-inch LCD monitors from place to place.What are some features that make these monitors portable?
These 14-inch TFT monitors are usually more rugged than standard computer monitors. For example, the screens will be much more impact-resistant than a regular display. Additionally, the chassis itself will resist scratches and the occasional ding. Rather than using a standard DVI, HDMI, or DisplayPort connector, many of these products can also be attached to your computing devices through a simple USB connector, which means that there"s a wider range of display options available with a 14-inch LCD monitor that connects this way.
A monitor is key. You’ll use it hour after hour, day after day, year after year. Monitors even have the audacity to resist obsolescence, so the monitor you buy today might be the one you’re still using in a decade. (My editor and I both have decade-old Dell U2412 monitors that are still going strong.)
It’s an important decision, but not a difficult one, as there are dozens of great monitors to choose from. This guide will help you pick the best for your home office.
I’ve reviewed monitors and laptop displays for over a decade. While different monitors suit different owners, I believe the idealhome office monitor has a 27-inch screen and 4K resolution. It uses an IPS panel, reaches a brightness of at least 250 nits, and can display 99 percent of the sRGB color gamut. Around back you’ll find a USB-C port that can deliver enough power to charge a laptop, along with HDMI and DisplayPort, plus an ergonomic stand that can adjust for height and attaches to a VESA mount.
Finding a monitor that ticks most of these boxes won’t be too difficult. LG’s UltraFine line, Dell’s USB-C hub monitors, BenQ’s PD2720U and PD2725U, and HP’s U28 can check them all. Only the price may be higher than you hope; snagging any of the above will cost at least $450.
But like I said, different monitors suit different owners. These monitors are ideal for work, but they’re expensive. They also lack features you’ll crave when it’s time to clock out and fire up a round of Valorant. This guide will help you navigate the monitor world’s many caveats and find one that’s a fit for you.
Most standard-width monitors come in one of three sizes: 24-inch, 27-inch, and 32-inch. Bigger is not necessarily better. A large display may look more impressive, but I find it uncomfortable when placed close to my eyes. There are also practical considerations like perceived pixel density. A big monitor will look fuzzier than a smaller monitor of the same resolution unless you move it further away — which isn’t always an option.
That’s why a 27-inch monitor is my go-to recommendation. It’s large enough to look impressive on a typical home office desk but isn’t excessive. In my experience, 32-inch monitors should be reserved for unusually large and deep desks, or corner setups where it’s possible to position the display around four feet away from your face. This is especially true for 32-inch monitors with a resolution below 4K, which look grainy to me at a distance of three feet.
For the same reasons, 24-inch monitors work better if you have a small, slim desk (say, around 24 inches deep or less) or otherwise bring the monitor closer to your face. A 24-inch monitor may sound small, but it’ll look reasonably large because it’s so close. They’re also a great way to save money. You can buy a decent all-around monitor like the HP 24mh for less than $200. It won’t wow you, but it works in a pinch.
Smaller models lack vertical space. A 29-inch ultrawide has less vertical display space than a 24-inch widescreen. Larger models generally have the opposite problem. Many are too big for a typical home office desk, not only because of their screen size, but because of the large stands used to stabilize them (some are several feet wide). You might need to rearrange your desk around a 38-inch or 43-inch monitor or add a top-tier monitor arm to make it work.
What about super-ultrawides, like the 49-inch Samsung Odyssey G9 series? These monitors can offer a commanding view and are a good alternative to a double or triple monitor setup but, like big ultrawides, you’ll need to build your setup around it.
4K resolution (3,840 x 2,160) looks fantastic and is widely available on 27-inch and 32-inch displays. It’s not that expensive, either. Budget 4K 27-inch monitors like the Dell S2721QS can get you 4K for $350 or less.
With that said, settling for 1440p (2,560 x 1,440) can save money. It’s a bit disappointing on a 32-inch display, unless you move it far away, but it’s workable. A 27-inch 1440p display can look reasonably sharp and is a good choice if you personally don’t care about having the sharpest picture possible.
You should probably avoid 1080p (1,920 x 1,080) in a 27-inch or 32-inch monitor, however. It will look grainy and pixelated. Small fonts and interface elements (such as buttons) can become difficult to see.
Twenty-four-inch monitors are a different story; 4K is rare, and 1440p is often the premium option. In fact, most monitors of this size are 1080p. It’s not ideal but it’s acceptable, as decreasing size increases pixel density. A 24-inch 1080p monitor is noticeably sharper than a 27-inch 1080p monitor.
Want a 34-inch ultrawide? Look for 3,440 x 1,440 resolution. This leads to a pixel density nearly identical to a 27-inch 1440p monitor (about 109 pixels per inch). A handful of super-budget ultrawides use 2,560 x 1,080 resolution which, like 1080p on a large monitor, isn’t pleasant. LG’s 5K Ultrawide line is the sole option if you want 4K-equivalent pixel density in a 34-inch ultrawide, but you’ll typically pay $1,500 or more. LG’s well-reviewed 38-inch with 3,840 x 1,600 resolution costs even more at $1,600 and, though it might offer more screen, is equal in pixel density to a 3,440 x 1,440 ultrawide.
Super-ultrawides also don’t offer much choice. All 49-inch super-ultrawides I’m aware of use the same 5,120 x 1,440 resolution which, again, roughly equals the pixel density of a 1440p 27-inch display.
Most monitors have HDMI and DisplayPort. There’s no great reason to prefer one over the other for remote work. The huge majority of monitors sold today offer both, so the port you use will likely come down to what’s available on your PC.
What about HDMI 2.1? It’s not necessary for remote work, and productivity monitors with HDMI 2.1 aren’t yet a thing. Be warned that HDMI 2.1 could get messy in 2022 due to the standard’s lax certification. It’s key only if you want to connect a PlayStation 5 or Xbox Series X game console.
If you’ve got extra cash to spend, the galaxy-brain move is to ignore HDMI and DisplayPort entirely and leap to USB-C and/or Thunderbolt. USB-C and Thunderbolt are great because they allow a single-cable solution for modern laptops that support the standard. You can plug in the laptop and charge it from the monitor while sending video to the monitor simultaneously. The best USB-C monitors even act as a hub with multiple extra ports like USB-A, USB-C, and ethernet.
The underside of this 27-inch Dell USB-C Hub Monitor is bristling with connectivity, much of it accessible via a single USB-C cable that also provides 90W of charging. Image: Dell
But you’ll also need to make sure the monitor you buy provides enough electricity. Power Delivery currently maxes out at 100 watts, so even the most powerful monitors can’t fully power laptops like a top-spec Razer Blade or high-end MacBook Pro 16, but a monitor that delivers 60 watts or even 45 watts might be enough if you have a thin-and-light laptop like a Dell XPS 13 or MacBook Air. The higher the better, but if the USB-C monitor doesn’t deliver as much power as your laptop’s power brick, your battery might only charge when it’s idle or even powered off.
USB-C monitors are also expensive. The benefits often add several hundred dollars to the price when compared to an otherwise similar monitor that lacks USB-C. It’s worth the money, though: in 2019, I purchased a Viewsonic VG2455-2K for a sweet one-cable connection to USB-C capable laptops, and find it ideal for swiftly connecting my laptop to a larger screen.
Many monitors also adjust for tilt and swivel, and some pivot 90 degrees into portrait orientation. That can be particularly handy when a monitor is used as a second display. For example, you could swivel a monitor to directly face you while doing detailed work, like editing a photo, and swing it away when it’s just displaying Slack or Discord. Tilt is similar but on the vertical axis, and especially handy if you have a standing desk, as you may need to tilt the monitor up while the desk is standing.
But if your monitor doesn’t have enough range of motion, or you want to free up space on your desk, you could instead add a VESA-compatible monitor arm to get it off the ground. Look for monitors with a 100mm x 100mm VESA spacing pattern. This is an extremely common feature found in all but the most affordable monitors, and you only need to worry about the 100mm spacing pattern. Others exist, but are relevant to other types of displays (like televisions).
Larger, heavier monitors will need a beefier, more expensive arm: the model Ergotron recommends for the 49-inch Samsung Odyssey Neo G9 is currently $379 (and, at the time I wrote this, sold out!)
Color accuracy is critical to image quality. An inaccurate monitor will look unnatural, flat, and dull, with strange swings in quality depending on what you’re viewing and the precise colors that are inaccurate (it’s common for monitors to be less accurate in blue or cyan than other colors, for example). A monitor with terrible color will disappoint you every time you sit down to use it.
The good news? Accuracy is low-key the greatest advancement in monitors over the last decade. Noticeably inaccurate displays were common when I began testing monitors well over a decade ago. Today, most midrange monitors have reasonable accuracy straight out of the box.
Still, there is a difference between midrange and premium monitors. Those who want great color accuracy should look for a “factory calibrated” monitor, which typically includes a calibration report in the box. This doesn’t guarantee color accuracy is perfect, but it at least shows the company put the monitor through an extra layer of quality assurance. Also check reviewers to see if the monitor lives up to its claims.
Color gamut, which describes the spectrum of colors a monitor can display, is also good enough on most monitors. The majority of content on a computer targets a color gamut called sRGB. Modern monitors display at least 95 percent of this gamut, and many display it all. Other gamuts also exist. DCI-P3 is the most advertised, though you may see Rec.709 or Adobe RGB as well. These gamuts are important if your work requires them, though if that’s the case, I’m guessing you know that. As with color accuracy, buyers concerned about gamut should read reviews to verify a monitor lives up to its claims.
That’s not a big ask, but budget monitors can’t always manage it, so be careful if you’re shopping on a tight budget. Manufacturers also tend to choose a best-case scenario when quoting brightness, so the listed brightness may not always be available. Buy a monitor that promises a maximum brightness of at least 250 nits (aka cd/m2).
Nearly all monitors sold today use an LCD panel based on one of three technologies: twisted nematic (TN), in-plane switching (IPS), and vertical alignment (VA).
The least expensive monitors often use a TN panel. Avoid them. TN panel monitors will display an image, but that’s about it. They look achingly dull next to IPS and have astoundingly bad viewing angles.
A majority of monitors use IPS. Monitors based on IPS have very accurate color and can support a wide color gamut at a reasonable price. IPS struggles with dark scenes, however, because it can’t achieve a convincing shade of black. This is the dreaded “IPS glow” you may have heard of, which can look unappealing when watching movies or playing games. However, gamers still enjoy IPS monitors because some IPS panels have low response times and very high refresh rates.
What about VA? This panel type has the best contrast ratio and dark scene performance of the three, which makes VA a great go-to choice for entertainment and gaming. This is especially true of high-quality, modern VA panels, which have mostly solved the color accuracy and motion smearing issues of some past VA monitors.
The choice between IPS and VA has no clear answer, as both have their perks. When it comes to work, though, you may find the choice is made for you. A huge majority of productivity monitors use an IPS panel. VA is an option, but you’ll want to lean your search toward gaming monitors if you crave the high contrast a quality VA panel can provide.
High-refresh gaming displays aren’t especially expensive, with 24-inch, 144Hz models sold for as little as $200. But you’ll typically trade something away for refresh rate: that $200 monitor might use an iffy TN panel (rather than IPS or VA) or feature a low resolution. It’s possible to snag a 4K display for a reasonable sum, or one with a high refresh rate, but going for 4K at 144Hz means looking at monitors that cost as much as big televisions.
Also, USB-C with Power Delivery is rarely found in gaming monitors, and I haven’t seen a USB-C gaming monitor that doubles as a USB-C hub. That could be an issue if your work setup involves a lot of wired peripherals.
Mini LED adds a twist. The fundamentals remain similar, but the backlight is divided into hundreds of zones that can turn on and off independently. This allows extra brightness but also convincing contrast in shadowy scenes. Mini LED is also outstanding for HDR movies and games, where its class-leading brightness provides an edge.
OLED? It flips the table, using an array of organic elements that create their own light. This provides pixel-level lighting control for truly unparalleled contrast you have to see to believe. OLED is also susceptible to burn-in, though there are ways to mitigate it from affecting a display prematurely.
Neither of these are necessary for working from home, and you’ll likely have to spend thousands to snag a monitor with either tech. Alternatively, you could buy a television with Mini LED or OLED technology, but televisions still have their downsides as monitors.
If you demand the very best from a monitor, however, I recommend Mini LED. OLED’s burn-in worries are legitimate on the PC which, compared to a television, will display static images more frequently. Mini LED can’t match OLED’s contrast, but it’s still a major upgrade over a backlit LCD screen. There’s also the emerging category of quantum dot OLED (QD-OLED) screens, but manufacturers haven’t announced prices for those yet.