adafruit 2.8 tft lcd with touch screen made in china
Add some pizazz to your arduino project with a beautiful large touchscreen display shield with built in MicroSD card slot and a capacitive touchscreen. This TFT display is big (2.8" diagonal) bright (4 white-led backlight) and colorful (262, 000 different colors!) 240x320 pixels with individual pixel control. It has a lot more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen. This shield is the capacitive version as opposed to the resistive touchscreen we also sell. This touchscreen doesn"t require pressing down on the screen with a stylus, and has a nice glossy glass cover. It is a single-touch display. This shield uses SPI for the display and SD card and is easier to use with uno, Mega & leonardo arduino"s. The capacitive touchscreen controller uses i²c but you can share the IEC bus with other i²c devices. The shield is fully assembled, tested and ready to go. No wiring, no soldering! simply plug it in and load up our library - you"ll have it running in under 10 minutes! works best with any classic arduino (uno/duemilanove/diecimila). solder three jumpers and you can use it at full speed on a leonardo or Mega as well. This display shield has a controller built into it with ram buffering, so that almost no work is done by the controller. This shield needs fewer pins than our V1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, 2 shared i²c pins for the touchscreen controller and another pin for usd card If you want to read images off of it. Of course, we wouldn"t just leave you with a data sheet and a" good luck!" - we"ve written a full open source graphics library that can draw pixels, lines, rectangles, Circles and text.
Add some sizzle to your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection and a capacitive touchscreen. This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
This shield is the capacitive version as opposed to the resistive touchscreen we also sell. This touchscreen doesn"t require pressing down on the screen with a stylus, and has a nice glossy glass cover. It is a single-touch display.
This shield uses SPI for the display and SD card and is easier to use with UNO, Mega & Leonardo Arduino"s. The capacitive touchscreen controller uses I2C but you can share the I2C bus with other I2C devices.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, 2 shared I2C pins for the touchscreen controller and another pin for uSD card if you want to read images off of it.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x & y location and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
The display uses digital pins 13-9. Touchscreen controller requires I2C pins SDA and SCL. microSD pin requires digital #4. That means you can use digital pins 2, 3, 5, 6, 7, 8 and analog 0-5. Pin 4 is available if not using the microSD
The TFT display is a kind of LCD that is connected to each pixel using a transistor and it features low current consumption, high-quality, high-resolution and backlight. This 2.8-inch full color LCD has a narrow PCB display. The resolution is 320×280 pixels and it has a four-wire SPI interface and white backlight.
Add some sizzle to your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection and a capacitive touchscreen.
This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
This shield is the capacitive version. This touchscreen doesn"t require pressing down on the screen with a stylus, and has a nice glossy glass cover. It is a single-touch display.
This shield uses SPI for the display and SD card and is easier to use with UNO, Mega & Leonardo Arduino"s. The capacitive touchscreen controller uses I2C but you can share the I2C bus with other I2C devices.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, 2 shared I2C pins for the touchscreen controller and another pin for uSD card if you want to read images off of it.
The display uses digital pins 13-9. Touchscreen controller requires I2C pins SDA and SCL. microSD pin requires digital #4. That means you can use digital pins 2, 3, 5, 6, 7, 8 and analog 0-5. Pin 4 is available if not using the microSD
Add some sizzle to your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection and acapacitivetouchscreen.Adafruit 2.8" TFT Touch Shield for Arduino w/Capacitive Touchis big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen. It is a single-touch display.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Adafruit 2.8" TFT Touch Shield for Arduino w/Capacitive Touch works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
The display uses digital pins 13-9. Touchscreen controller requires I2C pins SDA and SCL. microSD pin requires digital #4. That means you can use digital pins 2, 3, 5, 6, 7, 8 and analog 0-5. Pin 4 is available if not using the microSD
A few weeks ago, I wrote this article about using a text variable as an array, either an array of strings or an array of numbers, using the covx conversion function in addition for the latter, to extract single elements with the help of the spstr function. It"s a convenient and almost a "one fits all" solution for most use cases and many of the demo projects or the sample code attached to the Nextion Sunday Blog articles made use of it, sometimes even without mentioning it explicitly since it"s almost self-explaining. Then, I got a message from a reader, writing: "... Why then didn"t you use it for the combined sine / cosine lookup table in the flicker free turbo gauge project?"105 editions of the Nextion Sunday blog in a little over two years - time to look back and forth at the same time. Was all the stuff I wrote about interesting for my readers? Is it possible at all to satisfy everybody - hobbyists, makers, and professionals - at the same time? Are people (re-)using the many many HMI demo projects and code snippets? Is anybody interested in the explanation of all the underlying basics like the algorithms for calculating square roots and trigonometric functions with Nextion"s purely integer based language? Are optimized code snippets which allow to save a few milliseconds here and there helpful to other developers?Looking through the different Nextion user groups on social networks, the Nextion user forum and a few not so official but Nextion related forums can be surprising. Sometimes, Nextion newbies ask questions or have issues although the required function is well (in a condensed manner for the experienced developer, I admit) documented on the Nextion Instruction Set page, accessible through the menu of this website. On top of that, there is for sure one of my more than 100 Sunday blog articles which deals not only with that function, but goes often even beyond the usual usage of it. Apparently, I should sometimes move away from always trying to push the limits and listen to the "back to the roots!" calls by my potential readers...Do you remember the (almost) full screen sized flicker free and ultra rapid gauge we designed in June? And this without using the built-in Gauge component? If not, it"s time to read this article first, to understand today"s improvements. The June 2022 version does its job perfectly, the needle movement is quick and smooth, and other components can be added close to the outer circle without flickering since there is no background which needs constantly to be redrawn. But there was a minor and only esthetic weak point: The needle was a 1px thin line, sometimes difficult to see. Thus, already a short time after publishing, some readers contacted me and asked if there were a way to make the needle thicker, at least 2 pixels.Recently, when playing with a ESP32 based NodeMCU 32S and especially with its WiFi configuration, I did as (I guess) everybody does: I loaded an example sketch to learn more about the Wifi library. When you set up the ESP32 as an access point, creating its own wireless network, everything is pretty straightforward. You can easily hard code the Wifi name (SSID) and the password. But what about the client mode ? Perhaps one needs to use it in different environments. And then, a hard coded network name and password are definitively not the best solution. Thus, I thought, why not use a Nextion HMI for a dynamic WiFi setup functionality?Although the Nextion MIDI I/O interface has been primarily designed as an add-on for Nextion HMI screens to transform these in fully autonomous MIDI devices as shown in previous blog posts here, it is also of great use for any Arduino based electronic music project! Many MIDI projects for Arduino suffer from a lack good hardware support. There are sophisticated code, excellent libraries and an infinity of use cases, but afterwards, things tend not to work in a rather rough environment in the studio or on stage. That"s because two resistors and a few Dupont wires on a breadboard besides the Arduino are not really an interface which could drive your Synth, Sequencer, or Drum machine over a 5m long MIDI cable.
No, I do not understand why the module does not link all the SPI bus signals on the pcb. It would save 6 external pins. On the other hand, libraries like UTFT and URTouch have no concept of hardware SPI or bus.