tft lcd vs ips lcd vs super amoled free sample
Super AMOLED (S-AMOLED) and Super LCD (IPS-LCD) are two display types used in different kinds of electronics. The former is an improvement on OLED, while Super LCD is an advanced form of LCD.
All things considered, Super AMOLED is probably the better choice over Super LCD, assuming you have a choice, but it"s not quite as simple as that in every situation. Keep reading for more on how these display technologies differ and how to decide which is best for you.
S-AMOLED, a shortened version of Super AMOLED, stands for super active-matrix organic light-emitting diode. It"s a display type that uses organic materials to produce light for each pixel.
One component of Super AMOLED displays is that the layer that detects touch is embedded directly into the screen instead of existing as an entirely separate layer. This is what makes S-AMOLED different from AMOLED.
Super LCD is the same as IPS LCD, which stands forin-plane switching liquid crystal display. It"s the name given to an LCD screen that utilizes in-plane switching (IPS) panels. LCD screens use a backlight to produce light for all the pixels, and each pixel shutter can be turned off to affect its brightness.
There isn"t an easy answer as to which display is better when comparing Super AMOLED and IPS LCD. The two are similar in some ways but different in others, and it often comes down to opinion as to how one performs over the other in real-world scenarios.
For example, one quick consideration is that you should choose S-AMOLED if you prefer deeper blacks and brighter colors because those areas are what makes AMOLED screens stand out. However, you might instead opt for Super LCD if you want sharper images and like to use your device outdoors.
S-AMOLED displays are much better at revealing dark black because each pixel that needs to be black can be true black since the light can be shut off for each pixel. This isn"t true with Super LCD screens since the backlight is still on even if some pixels need to be black, and this can affect the darkness of those areas of the screen.
What"s more is that since blacks can be truly black on Super AMOLED screens, the other colors are much more vibrant. When the pixels can be turned off completely to create black, the contrast ratio goes through the roof with AMOLED displays, since that ratio is the brightest whites the screen can produce against its darkest blacks.
However, since LCD screens have backlights, it sometimes appears as though the pixels are closer together, producing an overall sharper and more natural effect. AMOLED screens, when compared to LCD, might look over-saturated or unrealistic, and the whites might appear slightly yellow.
When using the screen outdoors in bright light, Super LCD is sometimes said to be easier to use, but S-AMOLED screens have fewer layers of glass and so reflect less light, so there isn"t really a clear-cut answer to how they compare in direct light.
Another consideration when comparing the color quality of a Super LCD screen with a Super AMOLED screen is that the AMOLED display slowly loses its vibrant color and saturation as the organic compounds break down, although this usually takes a very long time and even then might not be noticeable.
Without backlight hardware, and with the added bonus of only one screen carrying the touch and display components, the overall size of an S-AMOLED screen tends to be smaller than that of an IPS LCD screen.
This is one advantage that S-AMOLED displays have when it comes to smartphones in particular, since this technology can make them thinner than those that use IPS LCD.
Since IPS-LCD displays have a backlight that requires more power than a traditional LCD screen, devices that utilize those screens need more power than those that use S-AMOLED, which doesn"t need a backlight.
That said, since each pixel of a Super AMOLED display can be fine-tuned for each color requirement, power consumption can, in some situations, be higher than with Super LCD.
For example, playing a video with lots of black areas on an S-AMOLED display will save power compared to an IPS LCD screen since the pixels can be effectively shut off and then no light needs to be produced. On the other hand, displaying lots of color all day would most likely affect the Super AMOLED battery more than it would the device using the Super LCD screen.
An IPS LCD screen includes a backlight while S-AMOLED screens don"t, but they also have an additional layer that supports touch, whereas Super AMOLED displays have that built right into the screen.
For these reasons and others (like color quality and battery performance), it"s probably safe to say that S-AMOLED screens are more expensive to build, and so devices that use them are also more expensive than their LCD counterparts.
If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.
What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have budget leftover, you can also add touch screen functionality as most of the touch nowadays uses PCAP (Projective Capacitive) touch panel.
This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.
Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.
TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.
OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.
LCD is an acronym that stands for Liquid Crystal Display and it is one of the most commonly used display by OEMs on their devices. LCD displays are further categorised into two types on the basis of the technology used to make them. The two types are IPS LCD and TFT LCDs.
TFT stands Thin-film Transistor and de facto, it really isn’t a type of display. TFT is only the technology used to produce LCD display panels. TFT LCD displays use an ‘Active Matrix Technology” where the display transistor and capacitor have individual pixels attached to them. In fact, each pixel can have as many as four transistors; for switching them off and on easily. TFT displays are widely known for having high contrast ratios, resolution and image quality. They are also cheaper to produce but not as cheap as IPS LCD.
IPS stands for In-Plane Switching and it is the most popularly used type of LCD panels for a number of reasons. First, compared to TFT, the crystal/pixel orientation on IPS LCD is different. This modification allows for improved colour reproduction, better viewing angles, and reduced energy consumption. This is why IPS LCD is preferred over TFT by most gadgets manufacturers.
Generally, LCDs are known as the “backlit displays” because the pixels on the display are powered by a polarized light engineered to the screen. The light passes through the (horizontal and vertical) filters which help determine the pixel’s brightness. Although the inclusion of a backlight makes LCD displays (and phones) thicker, pixels are generally more closely packed, colours are more natural, and images — sharper.
OLED stands for “Organic light-emitting diode”. OLED is one of the latest display innovation used in many gadgets and electronics like smartphones and TVs. Unlike LCD displays, OLED panels produce their own light and do not rely on a backlight. This self-emission is achieved when an electrical current passes through two conductors with an organic carbon-based film between them.
Regarding quality, OLED are generally better at displaying blacks. They are also slimmer, dissipate less heat, and possess better contrast ratio when compared to LCDs. However, they are more expensive to produce and in turn lead to an increase in the price of smartphones they are used on. Shorter lifespan is also a downside to OLED displays.
AMOLED is an advanced type of OLED display that uses an “Active Matrix” technology. AMOLED is the acronym for Active Matrix Organic Light Emitting Diode (AMOLED). Like OLED, AMOLED pixels also emit their own light and further uses an active matrix system attached to a thin-film transistor (TFT) to exert more control over each pixels. This results to better visual experience; darker blacks, deeper brights, and higher refresh rates.
AMOLED panels are mostly used in big-sized smartphones as it supports almost any display size. One downside to AMOLED panels, though, is poor usability under sunlight.
Also called S-AMOLED, Super AMOLED is an upgrade of AMOLED panels. Unlike regular AMOLED, this upgrade uses almost the same technology but with architectural modifications that makes it better. In S-AMOLED, the touch sensor component have been integrated with the screen; both are separated in regular AMOLED.
This difference results in brighter display, reduced power consumption, reduced sunlight reflection, enhanced outdoor readability, and wider viewing angles. Super AMOLED is one the best displays out there and can be found on many flagship devices like the Samsung Galaxy A7 (2018) with three rear cameras, Samsung Galaxy Note9.
You can easily identify your smartphone’s screen type through a simple Google search of your phone specifications. You should see your device’s screen type under the display department. The image below shows the screen type (IPS LCD) of the Coolpad Note 5.