3.2 tft lcd shield for arduino mega 2560 datasheet factory
Contact your seller on e-Bay. Ask him what display it is supposed to emulate. Look in the Supported Display file that comes with UTFT/URTouch libraries in the documents folder. See if that display is listed and use its definition in your programs.
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (3.2" diagonal) bright (5 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel with controller XPT2046 attached by default and a optional capacitive touch panel with controller FT6206 attached by default, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.
Begin by carefully starting the rear connector of the TFT shield onto the Arduino Mega. Go slowly and ensure that all pins are inserted correctly and are straight.
In order to use 3.2″ TFT lcd Shield , We must have the libraries. So you can download (UTFT Library) and (URTouch Library) install the library by extracting that zipped file in the library folder as shown below.
SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and multifunctional module for your project. The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.
SainSmart 3.2 TFT LCD shield works in 3.3V voltage level and you need to use cables to connect with Arduino Mega. And this shield can help you out of the bothers to use other cables. You just need to plug the module to Mega through this shield.
1.SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It is a powerful and multifunctional module for your project. The Screen include a controller SSD1289, it"s a support 8/16bit data interface, easy to drive by many MCU like STM32, AVR and 8051. It is designed with a touch controller in it. The touch IC isXPT2046
7. This TFT LCD Screen Module, 40pins interface, not just a LCD screen but include the Touch, SD card and Flash design. So it’s a powerful extension module for your project.
1. SainSmart TFT LCD adjustable shield is 100% compatible for the Mega2560 to expend more Pins and make the connection between the Mega 2560 and 3.2"LCD display easier.
2. SainSmart 3.2 TFT LCD module works in 3.3V voltage level and you need to use cables to connect with SainSmart Mega. And this shield can help you out of the bothers to use other cables. You just need to plug the module to Mega through this shield.
3. This shield supports both 16 bit modes. And Mega board has enough pins for using SD card and touch function at the same time. It also has an adjustable button for contrast of the LCD display.
Can be directly to the 3.2 "TFT on the shields, can be compatible with the ardui-no Funduino Mega 2560 The Mega 2560 is a microcontroller board based on the ATmega2560.
The Mega is compatible with most shields designed for the Ardui-no Duemilanove or Diecimila. The Mega 2560 is an update to the Ardui-no Mega, which it replaces.
§. When push buttons are touched, the button statuses (ON / OFF) will be written to the Arduino Mega 2560 via Ethernet Shield and be stored in transmitted buffer.
§. Arduino Mega 2560 will transmit these button statuses to PLC S7-300 via Profibus communication (RS-485 module). At PLC side, as hardware configuration in previous step, button statuses will be received at PLC"s input I0.0 ~ I0.7.
Put the screen(3.2 inch screen schematic) into shield (TFT01-3.2 shield schematic) first, then connect the shield to Arduino, it is quite straight forward.
3)Download and install UTFT ,URTouch ,SdFat,UTFT_Buttons and UTFT_SdRaw library file from following link and copy them into Arduino library folder. ( i.e. D:\arduino ide\Arduino 1.6.9\libraries )
Download the test program (http://www.kookye.com/download/3.2inchscreen/3.2inchtouchscreentest.zip), upzip and open it,then choose the correct board and port.
You will see the code in each sketch: UTFT myGLCD(CTE32_R2, 38, 39, 40, 41).The first value of code refer to the mode of LCD screen. Please write CTE32_R2 or ILI9341_16 if you LCD screen is ILI9341; Please write CTE32 if you LCD screen is SSD1289;
When you use the others LCD screen from the others seller, you could check the PDF instruction in documentation file or open the UTFT.h file to find the correct code.The controller mode could be identifitied by the back mark as the following pictures.
Note: In the project of testing the SD card,please insert the SD card into the slot in back of the 3.2’’ LCD screen. The format of files in SD card must be the FAT32, you need to put the test files(i.e. ICONS.RAW,WAIT4GPS.RAW,SK45) into the SD card root directory.
The Due has two usb connectors, the one with the micro-usb AB connector is the native one capable to act as an USB host, that means you can connect compatible external usb peripherals to the board, such as mouse, keyboards, smartphones. While the other USB port with the type B connector is intended for debugging purposes.
The SAM3X has 512KB (2 blocks of 256KB) of flash memory for storing code. The bootloader is preburned in factory from Atmel and is stored in a dedicated ROM memory. The available SRAM is 96KB in two contiguous bank of 64KB and 32KB. All the available memory (Flash, RAM and ROM) can be accessed directly as a flat addressing space.
It is possible to erase the Flash memory of the SAM3X with the onboard erase button. This will remove the currently loaded sketch from the MCU. To erase, press and hold the Erase button for a few seconds while the board is powered.
The ESPLORA Joystick Photosensitive Sensor Board is a microcontroller board compatible with Arduino & derived from the Arduino Leonardo. The ESPLORA Joystick Photosensitive Sensor Board differs from all preceding Arduino boards in that it provides a number of built-in; ready-to-use set of onboard sensors for interaction.
It’s designed for people who want to get up and running with Arduino without having to learn about the electronics first. For a step-by-step introduction to the Esplora; check out the Getting Started with Esplora guide.
The ESPLORA Joystick Photosensitive Sensor Board has onboard sound and light outputs, and several input sensors; including a joystick, a slider, a temperature sensor, an accelerometer, a microphone, and a light sensor. It also has the potential to expand its capabilities with two Tinker-kit input and output connectors, and a socket for a color TFT LCD screen.
Like the Leonardo board, the ESPLORA Joystick Photosensitive Sensor Board uses an Atmega32U4 AVR microcontroller with 16 MHz crystal oscillator. And a micro USB connection capable of acting as a USB client device like a mouse or a keyboard. In the upper left corner of the board, there is a reset push button, that you can use to restart the board.There are four status LEDs
The board contains everything need to support the microcontroller; simply connect it to a computer with a USB cable to get started. The Esplora has built-in USB communication; it can appear to a connected computer as a mouse or keyboard, in addition to a virtual (CDC) serial / COM port. This has other implications for the behavior of the board; these are detailed on the getting started page. You can find all the information you need to configure your board, use the Arduino Software (IDE); and start to tinker with coding and electronics.Input and Output
Wir arbeiten mit Google im Rahmen des Programms „Google Kundenrezensionen“ zusammen. Dieses Programm gibt uns die Möglichkeit, Kundenrezensionen von Nutzern unserer Website einzuholen. Hierbei werden Sie nach einem Einkauf auf unserer Website gefragt, ob Sie an einer E-Mail-Umfrage von Google teilnehmen möchten. Wenn Sie Ihre Einwilligung gemäß Art. 6 Abs. 1 lit. a DSGVO erteilen, übermitteln wir Ihre E-Mail-Adresse an Google. Sie erhalten eine E-Mail von Google Kundenrezensionen, in der Sie gebeten werden, die Kauferfahrung auf unserer Website zu bewerten. Die von Ihnen abgegebene Bewertung wird anschließend mit unseren anderen Bewertungen zusammengefasst und in unserem Logo Google Kundenrezensionen sowie in unserem Merchant Center-Dashboard angezeigt. Außerdem wird Ihre Bewertung für Google Verkäuferbewertungen genutzt. Im Rahmen der Nutzung von Google Kundenrezensionen kann es auch zu einer Übermittlung von personenbezogenen Daten an die Server der Google LLC. in den USA kommen. Sie können Ihre Einwilligung jederzeit durch eine Nachricht an den für die Datenverarbeitung Verantwortlichen oder gegenüber Google widerrufen. Für den Fall der Übermittlung von personenbezogenen Daten an die Google LLC. mit Sitz in den USA, hat sich Google LLC. für das us-europäische Datenschutzübereinkommen „Privacy Shield“ zertifiziert, welches die Einhaltung des in der EU geltenden Datenschutzniveaus gewährleistet. Ein aktuelles Zertifikat kann hier eingesehen werden: https://www.privacyshield.gov/list