compare crt vs lcd monitors for sale

Since the production of cathode ray tubes has essentially halted due to the cost and environmental concerns, CRT-based monitors are considered an outdated technology. All laptops and most desktop computer systems sold today come with LCD monitors. However, there are a few reasons why you might still prefer CRT over LCD displays.

While CRT monitors provide better color clarity and depth, the fact that manufacturers rarely make them anymore makes CRTs an unwise choice. LCD monitors are the current standard with several options. LCD monitors are smaller in size and easier to handle. Plus, you can buy LCD monitors in a variety of sizes, so customizing your desktop without all the clutter is easy.

The primary advantage that CRT monitors hold over LCDs is color rendering. The contrast ratios and depths of colors displayed on CRT monitors are better than what an LCD can render. For this reason, some graphic designers use expensive and large CRT monitors for their work. On the downside, the color quality degrades over time as the phosphors in the tube break down.

Another advantage that CRT monitors hold over LCD screens is the ability to easily scale to various resolutions. By adjusting the electron beam in the tube, the screen can be adjusted downward to lower resolutions while keeping the picture clarity intact. This capability is known as multisync.

The biggest disadvantage of CRT monitors is the size and weight of the tubes. An equivalently sized LCD monitor can be 80% smaller in total mass. The larger the screen, the bigger the size difference. CRT monitors also consume more energy and generate more heat than LCD monitors.

For the most vibrant and rich colors, CRTs are hard to beat if you have the desk space and don"t mind the excessive weight. However, with CRTs becoming a thing of the past, you may have to revisit the LCD monitor.

The biggest advantage of LCD monitors is the size and weight. LCD screens also tend to produce less eye fatigue. The constant light barrage and scan lines of a CRT tube can cause strain on heavy computer users. The lower intensity of the LCD monitors coupled with the constant screen display of pixels being on or off is easier on the eyes. That said, some people have issues with the fluorescent backlights used in some LCD displays.

The most notable disadvantage to LCD screens is the fixed resolution. An LCD screen can only display the number of pixels in its matrix. Therefore, it can display a lower resolution in one of two ways: using only a fraction of the total pixels on the display, or through extrapolation. Extrapolation blends multiple pixels together to simulate a single smaller pixel, which often leads to a blurry or fuzzy picture.

For those who are on a computer for hours, an LCD can be an enemy. With the tendency to cause eye fatigue, computer users must be aware of how long they stare at an LCD monitor. While LCD technology is continually improving, using techniques to limit the amount of time you look at a screen alleviates some of that fatigue.

Significant improvements have been made to LCD monitors over the years. Still, CRT monitors provide greater color clarity, faster response times, and wider flexibility for video playback in various resolutions. Nonetheless, LCDs will remain the standard since these monitors are easier to manufacture and transport. Most users find LCD displays to be perfectly suitable, so CRT monitors are only necessary for those interested in digital art and graphic design.

compare crt vs lcd monitors for sale

CRT stands for cathode-ray tube, a TV or PC monitor that produces images using an electron gun. These were the first displays available, but they are now outdated and replaced by smaller, more compact, and energy-efficient LCD display monitors.

In contrast, a Liquid crystal display, or an LCD monitor, uses liquid crystals to produce sharp, flicker-free images. These are now the standard monitors that are giving the traditional CRTs a run for their money.

Although the production of CRT monitors has slowed down, due to environmental concerns and the physical preferences of consumers, they still have several advantages over the new-age LCD monitors. Below, we shed some light on the differences between CRT and LCD displays.

CRTLCDWhat it isAmong the earliest electronic displays that used a cathode ray tubeA flat-panel display that uses the light-modulating properties of liquid crystals

CRTs boast a great scaling advantage because they don’t have a fixed resolution, like LCDs. This means that CRTs are capable of handling multiple combinations of resolutions and refresh rates between the display and the computer.

In turn, the monitor is able to bypass any limitations brought about by the incompatibility between a CRT display and a computer. What’s more, CRT monitors can adjust the electron beam to reduce resolution without affecting the picture quality.

On the other hand, LCD monitors have a fixed resolution, meaning they have to make some adjustments to any images sent to them that are not in their native resolution. The adjustments include centering the image on the screen and scaling the image down to the native resolution.

CRT monitors project images by picking up incoming signals and splitting them into audio and video components. More specifically, the video signals are taken through the electron gun and into a single cathode ray tube, through a mesh, to illuminate the phosphorus inside the screen and light the final image.

LCD screens, on the other hand, are made of two pieces of polarized glass that house a thin layer of liquid crystals. They work on the principle of blocking light. As a result, when light from a backlight shines through the liquid crystals, the light bends to respond to the electric current.

Thanks to the versatility of pixels, LCD screens offer crisper images than CRT monitors. The clarity of the images is a result of the LCD screen’s ability to produce green, blue, and red lights simultaneously, whereas CRTs need to blur the pixels and produce either of the lights exclusively.

The diversity of the pixels also ensures LCD screens produce at least twice as much brightness as CRTs. The light on these screens also remains uninterrupted by sunlight or strong artificial lighting, which reduces general blurriness and eyestrain.

Over time, however, dead pixels negatively affect the LCD screen’s visual displays. Burnout causes these dead pixels, which affect the visual clarity of your screen by producing black or other colored dots in the display.

CRT monitors also have better motion resolution compared to LCDs. The latter reduces resolution significantly when content is in motion due to the slow pixel response time, making the images look blurry or streaky.

With CRTs, you don’t experience any display lag because the images are illuminated on the screen at the speed of light, thus preventing any delays. However, lag is a common problem, especially with older LCD displays.

CRTs are prone to flickeringduring alternating periods of brightness and darkness. LCDs don’t flicker as much thanks to the liquid pixels that retain their state when the screen refreshes.

CRTs have a thick and clunky design that’s quite unappealing. The monitor has a casing or cabinet made of either plastic or metal that houses the cathode ray tube. Then there’s the neck or glass funnel, coated with a conductive coating made using lead oxide.

Leaded glass is then poured on top to form the screen, which has a curvature. In addition, the screen contributes to about 65% of the total weight of a CRT.

LCDs feature low-profile designs that make them the best choice for multiple portable display devices, like smartphones and tablets. LCD displays have a lightweight construction, are portable, and can be made into much larger sizes than the largest CRTs, which couldn’t be made into anything bigger than 40–45 inches.

A German scientist called Karl Ferdinand Braun invented the earliest version of the CRT in 1897. However, his invention was not isolated, as it was among countless other inventions that took place between the mid-1800s and the late 1900s.

CRT technology isn’t just for displays; it can also be utilized for storage. These storage tubes can hold onto a picture for as long as the tube is receiving electricity.

Like the CRT, the invention of the modern LCD was not a one-man show. It began in 1888 when the Austrian botanist and chemist Friedrich Richard Kornelius Reinitzer discovered liquid crystals.

Later, in 1897, Karl Ferdinand Braun, a German physicist, invented a cathode ray tube with a fluorescent screen and named it the “Braun Tube.” By developing the cathode ray tube oscilloscope, he was the first person to endorse the use of CRT as a display device.

LCD displays are a much more recent discovery compared to CRTs. Interestingly, the French professor of mineralogy, Charles-Victor Mauguin, performed the first experiments with liquid crystals between plates in 1911.

George H. Heilmeier, an American engineer, made significant enough contributions towards the LCD invention to be inducted into the Hall of Fame of National Inventors. And, in 1968, he presented the liquid crystal display to the professional world, working at an optimal temperature of 80 degrees Celsius.

Many other inventors worked towards the creation of LCDs. As a result, in the 1970s, new inventions focused on ensuring that LCD displays worked at an optimal temperature. And, in the 1980s, they perfected the crystal mixtures enough to stimulate demand and a promotion boom. The first LCDs were produced in 1971 and 1972 by ILIXCO (now LXD Incorporated).

Although they may come in at a higher price point, LCD displays are more convenient in the long run. They last almost twice as long as CRTs are energy efficient, and their compact and thin size make them ideal for modern-day use.

LCDs are also more affordable compared to other display monitors available today. So, you can go for a CRT monitor for its ease of use, faster response rates, reduced flickering, and high pixel resolution. However, we don’t see why you should look back since there are so many new options that will outperform both CRTs and LCDs.

compare crt vs lcd monitors for sale

If you are shopping for a display, you may look to compare LCD vs CRT computer monitors. Some of the best computer monitors come in a wide variety of styles and design types. Keep reading to learn the difference between these two types of monitors.

CRT displays, however, are known for superior color rendering performance and for offering high refresh rates. We have a whole page dedicated to explaining what a CRT monitor is if you’re curious.

CRT monitors are bad for the environment, as they draw a whole lot of power during use. To help reduce humanity’s carbon footprint through tech products, there are opportunities for computer monitor recycling.

There are multiple distinctions to be made between LCD and CRT monitors, as well as LCD vs LED monitors, but that’s for another post. A liquid crystal display (LCD) has liquid crystals squeezed between two sheets of glass along with an electron gun that shoots an electron beam, while a CRT (cathode ray tube) monitor features a number of cathode-ray tubes. This overall difference in design leads to widely different use case scenarios, such as when you are comparing LCD vs LED monitors for gaming.

Despite being an older technology, CRT monitors are quite capable when it comes to rendering accurate colors. As a matter of fact, many creative professionals opt for expensive newly made CRT screens over LCD technology, LED screens, or even OLED displays for just this reason. Another advantage to the bright and vivid colors found with CRT displays is that they slightly reduce eye fatigue, which can be a handy bit of information if you are comparing LCD vs LED monitors for eye strain. The downside here is that CRT monitors are fragile, so this color accuracy will break down over time as the phosphor tubes degrade.

Another surprising feature of CRT monitors is their ultra-fast refresh rates. Due to the nature of the design, they offer higher refresh rates than LCD screens, as the light has a shorter route to travel.

There is no way around it. Cathode tubes are extremely large and extremely heavy, making CRT monitors an absolute beast to haul around and to place in your workspace. LCD screens, on the other hand, are light and portable, easily fitting just about anywhere.

In most cases, LCD monitors will offer a much larger field of view for viewing image and video than CRT displays, due to the nature of the design of the flat screen. Something like an LCD screen would come in handy as a gaming monitor. The larger the field of view with a CRT, the heavier and bulkier it will be.

CRT monitors are made from multiple materials that are relatively tough to source and they draw a whole lot of power during use. In other words, they are not too great for the environment.

compare crt vs lcd monitors for sale

There are two primary types of computer monitors in use today: LCD monitors and CRT monitors. Nearly every modern desktop computer is attached to an LCD monitor. This page compares the pros and cons of both the CRT type displays and LCD or flat-panel type displays. You"ll quickly discover that the LCD or flat-panel displays pretty much sell themselves and why they are the superior display used today.

LCD monitors are much thinner than CRT monitors, being only a few inches in thickness (some can be nearly 1" thick). They can fit into smaller, tighter spaces, whereas a CRT monitor can"t in most cases.

Although a CRT can have display issues, there is no such thing as a dead pixel on a CRT monitor. Many issues can also be fixed by degaussing the monitor.

LCD monitors have a slightly bigger viewable area than a CRT monitor. A 19" LCD monitor has a diagonal screen size of 19" and a 19" CRT monitor has a diagonal screens size of about 18".

compare crt vs lcd monitors for sale

You might have used a large bulk size of the computer monitor in your childhood; it is the CRT monitor. Nowadays you are seeing that those types of monitors are disappearing and some slim-looking monitors are taking their place; these are the LCD and LED monitors. It has become our reality due to a fast technological advancement during the last few decades. In today’s topic, we will analyze CRT vs LCD monitors; their relative comparison, and try to figure out the differences.

The full form of CRT is Cathode Ray Tube. The CRT monitor is one kind of display unit. It is one of the oldest types of monitor. Although the use of CRT monitors is becoming obsolete with the invention of smarter monitors and TVs, you can still find them on the market because it is still useful in many cases.

The CRT monitor has a coating of phosphor inside the tube. An electron gun is a crucial component of a CRT monitor. The black and white CRT monitor has got only one electron gun; on the other hand, the colored one has got three different electron guns- red, green, and blue. The electrons emitted from the electron guns strike on the phosphor dots; thus the dots become ablaze which in turn represent us as pictures.

The full form of LCD is Liquid Crystal Display. This kind of display unit uses transparent liquid crystals to produce pictures. The crystals are charged up electrically and we are able to watch the display. The LCD monitor is a flat one; hence also called a Flat Panel Monitor. Its refresh rate is also higher.

The LCD display is used on the calculator and digital watch. The laptop and netbook extensively use LCD monitors for the display unit. A flat-panel monitor is also available for desktop PC, but the price is quite high. It can generally be connected through DVI or HDMI cables. But what are the actual differences in terms of CRT vs LCD monitors? The next sections will clear your all questions.

The difference between the CRT monitor and LCD monitor is mainly based upon the technology used for the make-up of the two and also the user-friendliness. Both types of monitors have their pros and cons, different usability, and function-ability. In this section, we will try to explain CRT vs LCD keeping in mind these facts.

The CRT monitor is the older type of display unit; whereas the LCD monitor is more of a recent invention. Hence, we can easily say that the CRT monitor is more conventional than the LCD monitor.

CRT monitors function on the basis of electron beams originating from the electron beam and hitting the phosphor dots. On the other hand, the operation of LCD monitors is based upon liquid crystals being charged up electrically. Both the monitors’ ultimate goal is to produce pictures not only in the form of still images but also in the form of motion.

LCD monitors use up much less power than CRT monitors. In fact, an LCD monitor consumes 3 to 4 times less power than a CRT monitor. It is one of the biggest advantages of LCD monitors.

You may have found out that as technology advances, gadgets are becoming smaller and smaller. It is of course done for getting the advantages of portability. The same case has happened in the evolution of the monitor. CRT monitor being the older one possesses a sizable body structure; whereas the LCD displays are slim and very small in size.

The CRT monitor is very heavy because it has to carry a weighted electron gun. An average-sized CRT monitor weighs generally 20 to 25 kg. The LCD monitor has a great edge in this respect. An LCD monitor generally weighs 4 to 6 kg which makes it easy to handle.

Image flickering is the frame disturbances on the monitor; a series of frames can not appear flawlessly as a blank frame causes two frames to set apart. This annoys a viewer to a great extent. CRT monitors have more problems with image flickering than LCD monitors.

Image persistence or image retention is the nature of a picture remaining static for a period of time. The CRT monitor does not have image persistence which the LCD monitor does possess. Although being an old monitor, the CRT monitor has an edge over the LCD monitor in this regard.

A CRT monitor has got some extra space around the main display, and this extra space is totally useless. The LCD monitor covers almost the full display as the viewing area and thus making it more efficient.

CRT monitors are better for wide viewing; you can watch a CRT TV from different sections of your room in a much better way compared to the LCD monitors.

The refresh rate of a monitor is one of the most important things that must be considered. Most LCD monitors produce a minimum refresh rate of around 200Hz; whereas the refresh rate of CRT monitors ranges between 70 to 80 Hz on average. Therefore, the resolution of the LCD monitor is much higher than that of the CRT monitor. Also, the G-sync monitor made the viewing experience awesome.

All the television sets used to be made of CRT mechanism in the old times. Computer manufacturers were also making CRT monitors with the limitation of the technology. These monitors are still available, but their use is becoming less and less with time.

LCD monitors have taken the place of old CRT monitors. LCD monitors are extensively used for personal computers, laptops, netbooks, digital watches, calculators, television, and whatnot. You can easily set up dual monitor or triple monitor for convenient usage.

Both the CRT and LCD monitors have their advantages and disadvantages in several aspects. The newer technology will always replace the older ones; even the LED monitors are replacing the LCDs in recent times. No matter old or new; you should buy a monitor according to your need and choice. After reading the article, you should know all about CRT vs LCD monitors and their key differences.

compare crt vs lcd monitors for sale

Text and images (scans of census records) are crisper and sharper and the LCD monitor is easier on your eyes. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy.

However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor. Viewing Direction: A CRT screen can be viewed from all directions. And from different distance. But LCD monitors cannot be viewed from all directions. LCD monitors can only be viewed straight. Therefore its viewing direction is limited. If viewed from other directions the colors will change and sometimes the vision will be unclear if not viewed straight. But in recent years the new LCD monitors have improved on this defect. Radiation Emission: The radiation emission in CRT monitors are higher. This will not be visible normally but it will affect eyesight and may cause head ache. Long term use of these monitors may even affect the eyes adversely. LCD monitors do not have this type of Radiation emission. Therefore LCD monitors are good for the eyes. Price: CRT monitors are priced very cheap. However they consume more power. LCD monitors are priced higher, but they consume less electricity. Though the electricity consumption is not very significant for personal use, it is very cost efficient in big organizations with many computers.

Text and images (scans of census records) are crisper and sharper and the LCD monitor is easier on your eyes. Dot pitch: This is the space between dots and is measured in fractions of a millimeter, e.g., .25mm. The smaller the number the better because the dots are tighter. Many manufacturers don%u2019t even list the dot pitch anymore and you probably won%u2019t be able to tell the difference between a .22 and .27 pitch anyway. So, if you like the monitor then don%u2019t worry about the dot pitch. Passive-matrix vs. active-matrix: Do not buy a passive-matrix monitor. I seriously doubt you%u2019ll even see one for sale, but%u2026just in case. Having said that, there are some new passive-matrix technologies that are worth buying. If the monitor isn"t TFT (a type of active-matrix), look for CSTN or DSTN (the latest passive technologies). Brightness: How bright is the picture, expressed as cd/m (I have no idea what the units mean). Look for a brightness level of 200 cd/m or greater. Again, if the monitor specs don%u2019t list this value (not all do) be sure you can get your money back. If the lighting in your office (kitchen table) is subdued the brightness factor won%u2019t be as important as if you have a lot of sunlight streaming in. Don%u2019t pay extra for extra brightness unless you%u2019re worried about bright sunlight. Overall, the contrast ratio will have a bigger impact on picture quality. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy. However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor.

Speaking of easy on your eyes, there isn"t any glare, and the flat screen means no distortion. By the way, even those expensive old-fashioned flat screen CRT monitors have some distortion. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy. However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor. Viewing Direction: A CRT screen can be viewed from all directions. And from different distance. But LCD monitors cannot be viewed from all directions. LCD monitors can only be viewed straight. Therefore its viewing direction is limited. If viewed from other directions the colors will change and sometimes the vision will be

compare crt vs lcd monitors for sale

If you are looking for a new display, you should consider the differences between CRT and LCD monitors. Choose the type of monitor that best serves your specific needs, the typical applications you use, and your budget.

Require less power - Power consumption varies greatly with different technologies. CRT displays are somewhat power-hungry, at about 100 watts for a typical 19-inch display. The average is about 45 watts for a 19-inch LCD display. LCDs also produce less heat.

Smaller and weigh less - An LCD monitor is significantly thinner and lighter than a CRT monitor, typically weighing less than half as much. In addition, you can mount an LCD on an arm or a wall, which also takes up less desktop space.

More adjustable - LCD displays are much more adjustable than CRT displays. With LCDs, you can adjust the tilt, height, swivel, and orientation from horizontal to vertical mode. As noted previously, you can also mount them on the wall or on an arm.

Less eye strain - Because LCD displays turn each pixel off individually, they do not produce a flicker like CRT displays do. In addition, LCD displays do a better job of displaying text compared with CRT displays.

Better color representation - CRT displays have historically represented colors and different gradations of color more accurately than LCD displays. However, LCD displays are gaining ground in this area, especially with higher-end models that include color-calibration technology.

More responsive - Historically, CRT monitors have had fewer problems with ghosting and blurring because they redrew the screen image faster than LCD monitors. Again, LCD manufacturers are improving on this with displays that have faster response times than they did in the past.

Multiple resolutions - If you need to change your display"s resolution for different applications, you are better off with a CRT monitor because LCD monitors don"t handle multiple resolutions as well.

So now that you know about LCD and CRT monitors, let"s talk about how you can use two monitors at once. They say, "Two heads are better than one." Maybe the same is true of monitors!

compare crt vs lcd monitors for sale

In the past, CRT monitors were the only choice for desktop systems, while LCDs were built into laptops. By the late 1990s, people could choose between the two. As technology has improved, it"s actually become more difficult to buy new CRTs, while flat screens have become the standard. Although LCDs were once quite expensive, prices have dropped considerably. CRTs still have pros, however, including clarity and reliability.

The traditional CRT monitor resembles a television set and uses the same technology. They have many pros: they are inexpensive, dependable, have good clear pictures and can be viewed from any angle. Unfortunately, they are also heavy, have a large footprint, aren"t environmentally friendly, and emit a fair amount of low-frequency radiation thought to be unhealthy.

As the technology improved, however, LCDs improved in all areas with sales overtaking CRTs in 2003. Even with these improvements, arguments continue that CRTs remain better suited to graphics professionals and to those who require consistent color regardless of viewing angle. Video editors, game developers or anyone who works with fast moving images in a professional capacity might also prefer a CRT, though it seems safe to assume diehard devotees have shrunk over the years. The remaining draw for the older technology is cost, appealing to those on a budget or to those who only use their computers infrequently, as a used CRT can be picked up for next to nothing. The price for new LCDs has dropped dramatically in recent years, however.

Nevertheless, the contest between the two is over for most. LCD monitors have extraordinary color and graphics with much crisper text and a screen that is easier on the eyes, reducing strain and headaches that sometimes accompanied long hours on a CRT. They are also great for long hours in text-based applications like word processors or spreadsheets, and they don"t require anti-radiation screens.

Choosing a model with a wide viewing angle effectively eliminates "wash out," while faster response rates have eliminated ghosting. With reduced eyestrain, great color, and virtually no fading or ghosting, a good LCD is a great choice for the whole family. Whether gaming, putting together a family photo album, surfing, doing homework or writing out proposals for work, the LCD will take up less space while using less electricity and emitting less radiation.

Because of its many advantages, LCDs have essentially overtaken CRT technology. Aside from graphics professionals, deciding between an LCD or CRT today might apply best in nations or regions where digital displays are scarce and the application requires the least expensive option, like in rural schools or non-profit and humanitarian aid organizations in third world nations. In these cases, the dutiful CRT will serve well and may be purchased inexpensively.

People who are interested in purchasing an LCD monitor should note that standardization in specifications is lacking. A viewing angle might actually be greater than advertised, or narrower. Response rates can also vary from manufacturer to manufacturer, so a direct comparison between different models can be misleading when judging from specs alone. Shoppers may find it helpful to read reviews from people who already own the product, along with professional reviews.

compare crt vs lcd monitors for sale

If you have searched the Internet for a TV-buying guide, chances are you have come across videos and discussions singing praises of CRT TV technology. It sounds absurd to even speculate that the obsolete technology can possibly come close to modern LCDs, let alone surpass them. But that is precisely the case.

LCD technology has serious quality issues, and the Internet has only just started to take note of the vocal minority of videophiles explaining how ditching bulky CRTs for modern flat-panel-display technology was a compromise. The notion being, LCDs continue to exhibit deal-breaking flaws that everyone has come to accept like a consumer-electronics version of the Stockholm Syndrome.

It’s easy to get tangled in the technicalities underlying poor black detail of LCDs, but nothing beats a real-world example. Not long ago, the Pentagon was forced to replace the LCD screens within the $400,000 Helmet-Mounted Display (HMD) of the F-35 fighter jets with OLED panels. The LCD panels relaying critical avionics and target acquisition/fire-control system data straight to the pilot’s helmet were plagued with a distracting green glow. The problem was so bad that the U.S. Navy restricted night landings on aircraft carriers.

This phenomenon can be blamed on the transmissive nature of LCDs. The individual pixels don’t emit light. LCDs form an image by manipulating the liquid crystals within the individual pixels to either transmit or block the backlight, which is never really switched off. Some of the backlight tends to leak out. Emissive displays such as CRTs and OLED can simply switch the individual pixels on or off.

CRTs reproduce colors by firing electrons to light up the red, green, and blue phosphor elements coated onto the glass substrate. This inherent accuracy allowed CRTs to achieve a level of color reproduction that was only limited by the video-processing hardware prevalent at that time. LCD manufacturers often specify what percentage of the standard color gamut their displays can reproduce. But full gamut color coverage was so effortless for CRTs that it would have been an exercise in futility to compare them by that metric.

LED lights are inherently impure and incapable of reproducing accurate white light. That’s why the color-accurate LED lights used by professional photographers involve blue LEDs coated with red and green phosphors to generate pure white light. Phosphors are pretty important for accurate color reproduction. The picture tube of a CRT is coated with just that and is critical for rendering the displayed image. Not surprisingly, OLED displays also use phosphor-based emissive illumination to achieve great color reproduction.

The more expensive quantum-dot LCDs achieve wider color gamut and improved color accuracy in a similar manner. These blue LEDs shine onto what’s essentially a plastic sheet containing nanoparticles that glow red and green when illuminated by the blue LED backlight. However, achieving a pure white backlight is great but not nearly enough.

Even quantum dot LCDs must reproduce colors with the same old LCD technology, which cannot faithfully reproduce colors. Worse yet, the bending of light by the liquid crystal panel and its passage through myriad arrays of color and polarization filters makes LCDs susceptible to parallax issues, which leads to color shift and poor viewing angles.

Color reproduction suffers if you don’t spend the big bucks on a fancy quantum-dot LCD. Moreover, the backlight in a traditional LCD isn’t pure white and is marred by hues of pink, orange, and yellow. All these factors further compound the inherent color inaccuracy of LCDs.

If pure blacks and nice colors are something that OLED displays also known to achieve, then why do gamers still swear by CRT monitors? The answer lies in motion. Even the cheapest CRT monitor could easily handle a refresh rate of 85Hz, with most average monitors operating at 100Hz. High-end CRTs could easily achieve 160Hz at screen resolutions of 1920×1200. High refresh rate is necessary for a smoother, more enjoyable gaming experience.

CRTs, however, didn’t have to compromise on picture quality to achieve high refresh rates. LCDs, on the other hand, are quite terrible at handling fast-moving content. The liquid crystals within an LCD are slow to reach, which results in long pixel response times. That in turn leads to a chronic case of motion blur, which makes high refresh rate gaming a tricky affair.

Higher-quality LCDs featuring IPS panels can’t achieve faster response times without compromising color gamut and accuracy. That’s why gaming monitors use TN LCD panels, which exhibit poor viewing angles and washed out colors as well as low contrast ratios. Competitive gamers can’t use LCDs without compromising on picture quality.

There is still a lot more to discuss, and there are many things that CRTs get right. For example, the raster-scanning nature of a CRT plays well with the human persistence of vision and naturally eliminates motion blur. Or that CRTs aren’t restricted to native resolutions and can move between them without losing image clarity or sharpness, unlike modern flat-panel displays.

At the same time, it is naive to turn a blind eye to the merits of LCD technology. Feats such as better brightness, higher resolution, ever-improving pixel density as well as sharpness, and longer service life as well. While LCD technology has clearly been a compromise, OLED has flaws that prevent it from being a viable replacement as well.

However, there’s hope in the upcoming MicroLEDs which combine the best aspects of LCDs and OLEDs and don’t seem to be a compromise compared to the CRTs.

compare crt vs lcd monitors for sale

CRT monitors have surged back to relevance on a wave of nostalgia, driven by the exploding popularity of retro gaming. Unfortunately, most of the reviews, specification sheets, and comparison data that once existed has vanished from the Internet, making it difficult to know what you should look for while scanning eBay and Craigslist ads.

If you’re looking for a newer display filled with the latest and greatest goodies, our guides to the best PC monitors, best 4K monitors, and best gaming monitors can help you find the perfect fit for your needs. But this particular guide will get you up to date on aging, but still hotly desired CRT monitors.

CRT monitors fell from fashion with the same breathtaking speed as portable CD players and vinyl records. Three out of four monitors sold in 2001 were a CRT. But in 2006, Sony drew curtains on the era when it ceased production of new CRT TVs and monitors.

Still, CRTs have their perks. Most have a better contrast ratio and higher refresh rates than modern LCD monitors, so content looks richer and deeper. There’s a sub-culture of first-person shooter fans who swear FPS games always look best on a high-end CRT monitor.

A CRT is also a window into an entire era of media. Films, movies, and games produced from the dawn of television to around 2004 were created with a CRT in mind. You can enjoy older media on a modern LCD or OLED, but it will never look as originally intended. A CRT computer monitor is the most versatile, practical choice for tapping into nostalgia.

One quick note: This guide is for CRT computer monitors, not professional video monitors. PVMs are high-end CRT televisions. They’re amazing for retro console gaming but aren’t designed for use with a computer.

Sony’s Trinitron dominates the conversation just as it does in the world of retro CRT televisions and PVMs. Trinitron computer monitors are excellent, easy to find, and come from Sony, a brand people still recognize today. Other outstanding brands include Mitsubishi, Hitachi, LaCie, NEC, Iiyama, and Eizo.

Dell, Gateway, HP, and Compaq monitors are less loved, but this can be an opportunity. Large PC manufacturers didn’t make monitors in-house but rebranded monitors from others, and some use the same CRT tubes found in Trinitrons and other brands. Deciphering what’s in a rebrand can be difficult, though, so you may need to take a leap of faith.

I don’t recommend fretting brands and models if this is your first CRT. Trying to find a specific monitor is frustrating and, depending on your dream monitor, can take years (or cost thousands of dollars). Still, keep brand in mind when negotiating price. A Gateway monitor with mystery specifications might look great, but it’s not worth top dollar.

CRTs were improved and refined over the years. The oldest CRT monitors commonly sold are pushing forty years of age. They have a low maximum resolution, a low refresh rate, and small physical display size.

Newer CRT monitors, such as those produced in the mid-90s and the 2000s, will look sharper, handle reflections better, and have less noticeable lines or gaps in the image they display. You’re also find better on-screen menus with extensive image quality options.

Luckily, CRT monitors often have a label indicating the year or even month of production. This is printed on the rear of the display or might be found on a sticker in this same location. Newer is better, and a CRT built this millennia are best.

Most CRT computer monitors have a display size between 13 and 21 inches. If you follow my advice and stick with newer monitors, though, you’ll be comparing monitors between 15 and 21 inches.

I don’t recommend going below 17 inches unless you’re trying to replicate the experience of a late-80s or early-90s computer or have very limited space. Smaller CRT monitors feel tiny by modern standards. They also tend to support lower resolutions that are only ideal for enjoying older content.

There’s such a thing as too large, too, so be cautious about massive CRTs. A 21-inch CRT monitor can weigh 50 or 60 pounds. You’re unlikely to run into a CRT computer monitor larger than 21 inches, and if you do, it can weigh nearly 100 pounds. The Sony GDM-FW900, a truly epic 24-inch 16:9 CRT, is the most well-known of these rare beasts.

19 inches is the sweet spot. This size of CRT monitor remains manageable. It’s about as tall as a 24-inch LCD (though narrower, of course) and isn’t too hard to find. With that said, 17-inch monitors are more common and less expensive, so don’t hesitate to leap on a 17-incher if you find one.

Resolution works differently on a CRT computer monitor than on a modern LCD. CRT monitors are an analog technology and don’t have a native resolution. CRT monitors were sometimes marketed with a “recommended” resolution that served as a guideline, but CRTs computer monitors support a range of input resolutions and refresh rates.

Take the Hitachi SuperScan 751 as an example. This 19-inch CRT computer monitor lists a maximum resolution of 1600 x 1200 at 85Hz but supports 1024 x 768 at 130Hz and 640 x 480 at 160Hz.

The importance of resolution depends on your use. I use my CRT monitor to run Windows 95/98 in a virtual machine, play late-90s PC games, and emulate console games. All of these were designed with lower resolutions in mind, so the content I’m viewing is usually at a resolution of 1024 x 768 or lower.

If you want to use a CRT monitor to play Doom: Eternal at insane refresh rates with near-perfect response times, however, you’ll prefer the highest resolution you can find. Resolution is not the final word on CRT monitor sharpness but in general a higher resolution will appear sharper.

Dot pitch is the distance between dots in a shadow mask or the distance between wires in an aperture grill. More on that in a moment. Remember that a CRT shoots electrons at the front of the display. The shadow mask or aperture grill filters the electrons so they hit phosphors at the front of the display and create a usable color image. The gaps in the shadow mask or aperture grill influences how sharp the image appears.

Dot pitch is measured in millimeters. I recommend monitors with a horizontal dot pitch around .28 millimeters or lower. A dot pitch between .24 millimeters and .21 millimeters is excellent. Lower is better, but you likely won’t find a monitor with a dot pitch below .21 millimeters in your search.

Make dot pitch a priority if you care about sharpness at resolutions beyond 1600 x 1200. A monitor with a lackluster dot pitch might support a high resolution but appear blurrier at a high resolution than a low resolution. This occurs when a CRT monitor’s dot pitch isn’t up to the task.

Dot pitch is less important if you only care to use a CRT at lower resolutions. Late-model CRT monitors will be enjoyable at 800 x 600 or 1024 x 768 no matter the dot pitch listed on their spec sheet.

A shadow mask or aperture grill is a filter a CRT computer monitor uses to make sure electrons end up where they should be. A shadow mask does the job with a metal mask of evenly spaced holes. An aperture grill uses an array of wires instead. Sony was the first to introduce aperture grill technology under the Trinitron brand name, but Sony wasn’t the only company that sold CRT monitors with an aperture grill.

In general, a monitor with an aperture grill will be superior to one with a shadow mask. The aperture grill blocks less light than a shadow mask, which translates to a brighter and more colorful picture. The aperture grill is also better suited for a flat CRT display, though flat shadow mask CRTs were produced.

That’s not to say shadow masks were trash. Hitachi and NEC put a ton of effort into shadow mask technology to rival Sony’s Trinitron and had success. A late-model Hitachi ErgoFlat or NEC ChromaClear is a great monitor. If you’re comparing two random, mid-range monitors, though, the aperture grill will probably be brighter and more attractive.

As mentioned, CRT monitors support a range of resolutions and refresh rates. The higher the resolution, the lower the refresh rate. Most late-model CRT monitors had a refresh rate of at least 75Hz at maximum resolution. Lower resolutions come with higher supported refresh rates with the best models topping out at 200Hz.

Refresh rate and resolution are linked. CRT monitors with the best refresh rates also support the highest resolutions. If you want the best refresh rate, then, you’ll need to keep an eye out for a top-tier CRT monitor, and you should expect to use it at a resolution lower than the maximum it supports.

Obsessing over a CRT’s refresh rate is often not worth the trouble. CRT monitors feel smooth not just because of refresh but also thanks to fundamental differences in how an image is produced. Nearly all late-model CRT monitors support a refresh rate of at least 75Hz at their maximum supported resolution and look exceptionally smooth.

Most CRT televisions and monitors have curved (also known as convex) glass. This was necessary to fix some problems of CRT technology. CRT makers found ways to overcome these issues by the mid-1990s and flat CRT displays hit the market. Shoppers loved them and flat-screen models dominated the final years of CRT production.

The big difference is the most obvious: Curved CRT monitors are curved, and flat CRT monitors aren’t. Your choice should come down to the “feel” you’re going for. A curved CRT will feel more accurate to a mid-90s PC or earlier, while flat screens were more common after the turn of the millennium. Those looking to use a CRT with modern software and games will prefer a flat screen as well.

The vast majority of CRT computer monitors you’ll encounter have a VGA video input. This is likely the only input on the monitor. It’s an analog technology that most modern computers do not support, so you’ll need an active DisplayPort or HDMI to VGA adapter. I use a StarTech adapter from Amazon.

Be careful about the adapter you purchase. Many, including the one I purchased, have a maximum resolution and refresh rate below the best CRT monitors available. It works for me because I’m mostly driving lower resolutions and my CRT monitor is a mid-range model. But I would need to upgrade if I bought a better CRT.

While VGA dominates by far, it’s not the only input you might find. A handful of late-model CRTs support a version of DVI-A or DIV-I, which can provide an analog signal. CRT monitors from the 1980s might use a different video input. Commodore 1701 and 1702 monitors, for example, can use a composite input (just as you’d find on a CRT television).

The fastest way to buy a CRT monitor is eBay or Etsy. Hundreds of CRT computer monitors are available, including many that fit the recommendations of this guide. You’ll have to spend several hundred dollars, however, and you can’t see the monitor before buying. Shipping is a gamble, too. Many fine CRTs have met their demise in the hands of Fedex.

Local listings like Craigslist, OfferUp, and Facebook Marketplace can help you find a more affordable monitor, but stock can be limited depending on your location. Rural readers may have to search for months or drive long distances. Try to test the CRT before you buy, especially if it’s not sold at a low price. Ask the seller to have it connected to a PC when you arrive.

Don’t neglect searching offline. I snagged my current CRT computer monitor for free from someone a few blocks away who decided to put old electronics on the curb. Yard sales and estate sales are great, too. They can be a grind if you don’t enjoy the search, but you’ll spend a lot less than you would online.

Put out the word, as well. Post on social media about your search and ask relatives if they have a hidden gem. CRT monitors aren’t easy to move or dispose of, so they’re often stuffed in a closet, attic, or basement. Many people will let you have a monitor to get it out of their hair.

Good luck on your search. Just remember: The best CRT monitor is the one you own. Don’t be too harsh on the CRTs you come across. Your first task is finding one that meets your needs and reliably works. After that, you can get picky. Once again, if you’re looking for a newer display filled with the latest and greatest goodies, our guides to the best PC monitors, best 4K monitors, and best gaming monitors can help you find the perfect fit for your needs.

compare crt vs lcd monitors for sale

CRT stands for Cathode Ray Tube and LCD stands for Liquid Crystal Display area unit the kinds of display devices wherever CRT is employed as standard display devices whereas LCD is more modern technology. These area unit primarily differentiated supported the fabric they’re made from and dealing mechanism, however, each area unit alleged to perform identical perform of providing a visible variety of electronic media. Here, the crucial operational distinction is that the CRT integrates the 2 processes lightweight generation and lightweight modulation and it’s additionally managed by one set of elements. Conversely, the LCD isolates the 2 processes kind one another that’s lightweight generation and modulation.

compare crt vs lcd monitors for sale

Tired of chunky cathode ray tube (CRT) monitors taking up space on their desks, users increasingly are turning to flat-panel liquid crystal display (LCD) instead, according to a study released Thursday.

LCD sales increased 8% from the fourth quarter of 2002 to the first quarter this year, research company DisplaySearch said. Shipments of 10.6 million units gave LCDs a 37% share of the display market, up from 30% the previous quarter, the Austin, Texas, research company said.

Sales grew for both stand-alone LCDs and those that come bundled with computers, but sales of stand-alone displays grew twice as fast, the company said.

The move to LCDs meant a decline for CRT monitor sales. CRT shipments fell 21% from the fourth quarter of 2002 to the first quarter of 2003, and 16% from a year ago, DisplaySearch reported. Total CRT sales for the year were 17.8 million units, accounting for 62% of all shipments, the company said.

A final 0.9% of shipments was accounted for by LCD PCs, where the screen is built into the computer itself, such as on some of Apple Computer Inc."s computers, Sung Eun Park, an analyst at DisplaySearch said Thursday.

Europe was the fastest growing market, growing 19%, while sales in North American fell 3%. This helped Europe to overtake North America as the largest LCD monitor market, DisplaySearch said.

By size, shipments of 15-inch displays fell 5%, while 17-inch Super Extended Graphics Array LCD shipments rose 41%, driven mainly by growth of 54% in Europe, DisplaySearch said.

Dell boosted its share of the worldwide LCD market to 16% in the first quarter, up from 14.7% in the same period a year earlier, DisplaySearch reported. It remained the top vendor in North America and boosted its position from second place to first place in Europe. Its market share ranking fell in Japan, however, from fifth to sixth.

compare crt vs lcd monitors for sale

The obsolescence of CRT monitors requires replacing stimulators used for eliciting VEPs with new monitors. Currently, LCD monitors are the only suitable alternative, however other technologies, like OLED, may become a viable option [23]. So far, the ISCEV extended protocol for VEP methods of estimation of visual acuity recommends ensuring luminance artifacts caused by non-CRT stimulators [9], which can be achieved by reducing the stimulus contrast [23]. However, this may not be possible without falling below the minimum contrast values recommended for VEP [1, 23]. Since LCD stimulators have been shown to result in mostly a delay in the VEP responses [2,3,4, 23] but seem not to affect the size of the amplitudes [2], we expected no difference between the estimated visual acuity by using LCD or CRT monitors used as a stimulator for the sweep VEP.

The results of the first experiment show statistically significant effects of the monitor type on the time-to-peak after stimulus onset and the peak-to-trough amplitude (Table 1). The mean delay of the time-to-peak after stimulus onset between recordings obtained using the LCD and the CRT monitor was about 60 ms, which is quite high and possibly caused by the relatively old LCD monitor used. Accordingly, statistically significant effects on the time-to-peak after stimulus onset and the peak-to-trough amplitude were found for the monitor/contrast combination in the results of the second experiment (Table 4). Surprisingly, the mean delay of the time-to-peak after stimulus onset of the CRT monitors with high contrast was with up to 151 ms, longer (Table 5) than that of the LCD monitors (with low and high contrast), although one would expect modern monitors to have shorter or even no delays [24, 25]. Additionally, a statistically significant interaction between the spatial frequency and the monitor type was revealed in both experiments, causing an increased time delay for the intermediate spatial frequencies (1.4–10.3 cpd) with LCD stimulation (Fig. 2, top left) in the first experiment and an almost linear increase with the spatial frequencies in the second experiment (Fig. 2, bottom left). This may be explained by the semi-manual cursor placement, which is necessary because the amplitudes are less pronounced at frequencies below and above this frequency band. Another cause might be an input lag resulting from the time required by the monitor to prepare the image data to be displayed. This could be caused by, e.g., internal scaling for non-native resolutions, which may even be present when using the monitor’s native resolution. In the worst case, this leads to nonlinearities of the response timing of the LCD monitor when presenting patterns of low or high frequency [26, 27]. In doubt, the precise duration of the input lag should be measured using a photodiode attached to the display [28] and in case of being constant, the delay could then be subtracted from the respective time-to-peak values. Finally, the higher latencies may also be caused by the different software used for generating the stimuli: whereas in the first experiment, a custom-developed Java-based software was used, in the second experiment, the Python-based PsychoPy was employed. Nevertheless, these differences seem not to affect the estimated visual acuity. The mean peak-to-trough amplitude using the LCD monitor in the first experiment is reduced by about 0.9 µV with a confidence interval from − 1.6 to − 0.2 µV compared to the CRT stimulator, but increased by about 2.6 µV (confidence interval from 1.2 to 4.0 µV) when comparing the new LCD monitor with the CRT monitor (both with high contrast) in the second experiment (Table 5). However, these differences were, despite being statistically significant, within the expected standard deviation from about 0.5 to 7 µV of the P100 amplitude found in the literature [29,30,31] and therefore probably of no clinical relevance (Fig. 2, right). Interestingly, the results of Nagy et al. [2] suggest a similar reduction in the peak-to-trough amplitude when using an LC display for stimulation. In the first experiment, no statistically significant interaction between monitor type and spatial frequency on peak-to-trough amplitude was found but a tendency to smaller amplitudes at intermediate frequencies (Table 1), whereas in the second experiment, the effect of the interaction of stimulator and spatial frequency was statistically significant (Table 4). It has to be taken into account that the residuals of the models were heteroscedastic and therefore the statistical significance of the effects may be overestimated [32].

In the first experiment, the difference between the subjective visual acuity and that estimated by the second-order polynomial method, or by the modified Ricker function, was not statistically significant from a hypothetical assumed value of 0 logMAR (Table 2). Neither were the variances between CRT and LCD statistically different. Accordingly, the linear mixed-effects models revealed no statistically significant effects of neither the monitor type, the recording cycle, nor their interaction on the difference between subjective and estimated visual acuity for both estimation methods (Table 3).

In contrast in the second experiment, the differences between subjective visual acuity determined using FrACT and the visual acuities estimated using the modified Ricker function along with the conversion formula used in the first experiment were significantly different from the hypothesized difference of 0 logMAR for both, the new gaming LCD monitor and the old LCD monitor, at high and low contrast, but not for the CRT monitor. After using an individually adjusted conversion formula for each monitor/contrast combination, no statistically significant difference from the hypothesized difference of 0 logMAR was found (Table 7). However, one should keep in mind that using the results to calculate the conversion formula used to predict the results is circular reasoning. Nevertheless, it indicates, that using individual established conversion formulas calculated from a sufficiently large number of normative data will minimize the error between true visual acuity and estimated visual acuity.

Table 6 lists the signal-to-noise ratio calculated from the fitted Ricker model for the different combinations of monitors and contrasts. The highest SNR was found for the CRT monitor using high contrast. The LCDs showed lower SNR values. The on average higher amplitudes obtained using LCD monitors (Table 5) indicate that more noise is present when stimulating using LCDs. However, this effect could be caused by the different software used for the stimulus presentation and the lower number of sweeps recorded for averaging compared to the recordings using the CRT monitor. Nevertheless, none of the differences between the SNR values obtained from the different monitor types was statistically significant (Table 6), which corresponds to the findings of Fox et al. [28].

We want to point out the limitations of the current study: We included only healthy participants, so the possible effects of LCD stimulators on patients with reduced visual acuity remain unclear and should be further investigated, especially since we found a statistically significant, albeit not clinically relevant, effect of the monitor/contrast combination on peak-to-trough amplitude and time-to-peak after stimulus onset in the second experiment (Tables 4, 5). Further limitations are that the participants were not stratified by age and that the subjective visual acuity in the first experiment was determined using an eye chart projector, in contrast to the second experiment, where FrACT was used, limiting the accuracy of the estimated value. Finally, this study compared only three specific monitors; therefore, the results are not universally valid.

In conclusion, based on the results of this study, LCD monitors may substitute CRT monitors for presenting the stimuli for the sweep VEP to objectively estimate visual acuity. Newer LCD screens, especially with low response times in the range of 1–2 ms, therefore, allow for a reduction in luminance artifacts at required contrast levels [23], albeit the luminance artifact may not have a large effect on the recorded signals [28]. New technologies like OLED displays [23] may even be better suited, since one the one hand, the onset will be the same for the whole pattern, and on the other hand, LCDs and OLEDs provide a constant luminance level during stimulation, whereas CRTs need a constants pulses to keep the phosphor lit up, causing fast local luminance flashes all the time [28]. Therefore, in contrast to CRTs, LCD and OLED stimulators, e.g., may allow for recording true offset responses [33]. However, caution should be taken when leveraging modern displays for stimulation, since their in-built electronics perform all kinds of sophisticated image-enhancing procedures including color-correction, brightness boosting, contrast enhancement by real-time adjustments of the colors or the backlight, or eyestrain-reducing blue light filtering, with the aim to improve the users’ experience, or to increase the monitors lifetime. This applies in particular to consumer electronics like TVs. Gaming monitors, in addition, use special acceleration drivers, which shut down the backlight, insert black frames (Black Frame Insertion, BFI), or employ variable refresh rates (e.g., Nvidia G-SYNC or AMD FreeSync) to clean the retained image from the eye. Therefore, one should disable any image processing or enhancing functionality in the monitor settings, before using the monitor as stimulator for electrophysiological experiments. Finally, it is advisable to perform a calibration with healthy volunteers using best-corrected and artificially reduced visual acuity and to collect normative data for the employed setup, as always recommended by ISCEV [34], in order to establish an individual conversion formula between the sweep VEP outcome and the estimated visual acuity.

compare crt vs lcd monitors for sale

Resolution on a CRT is flexible and a newer model will provide you with viewing resolutions of up to 1600 by 1200 and higher, whereas on an LCD the resolution is fixed within each monitor (called a native resolution). The resolution on an LCD can be changed, but if you’re running it at a resolution other tha