tft display for esp32 free sample

I"ve bought on AliExpress a cheap 1.77 color display module. Getting it to work on an Arduino was straight forward. But the Arduino is slow. I also got it working on an Esp8266, which was also straight forward. However getting it to work on an ESP32 was a little harder. I"ve tried several libraries, e.g. AdaFruit and UcgLib. These didn"t work. After some investigations the SPI speed was too high for the display. I tried to change the libs to reduce the speed. I didn"t work either.

So I left the project a few weeks and I started again. I searched for all possible libraries for ST7735 and ESP32. I found some and there was one I manged to get to work.

After tweaking the user_setup.h file I managed to get it to work.The settings that ware important to change was to change the ST7735 defines. Default I choose the first. This one didn"t work. I reduce SPI speed, which had no effect either. Than after some changes and tweaking connections and setting I finally worked. The ST7735 defines all work except the first one with my TFT-screen. I reset all to default and the SPI-speed and it kept working. It works at a 27 MHz speed, which leave me with 450 ms for the 11 test pages. If I increase the speed to the next value of 40 MHz I see errors in the display. So 27 MHz is max for me.

I also checked all other ST7735 defines, and for my TFT the ST7735_GREENTAB3 showed the correct colors. The other values show the wrong colors, but gave an image.

tft display for esp32 free sample

This project uses the SPIFFS (ESP32 flash memory) to store images used as background. You"ll need to upload these to the ESP32 before you upload the sketch to the ESP32. For this you"ll need the ESP32 Sketch Data Upload tool.

You can download this from Github: "https://github.com/me-no-dev/arduino-esp32fs-plugin". Follow the instructions on the Github to install the tool:Download the tool archive from releases page.

Before you upload the data folder to the ESP32, you"ll first have to select the right partitioning scheme.Go to Tools -> Board and select ESP32 Dev Module.

On Github you can find the full source code for this project. Go to the Bluetooth-System-Monitor Github repository and click "Code" and "Download .ZIP": https://github.com/DustinWatts/Bluetooth-System-M...

Firstly, depending on the board you are using (with resistive touch, capacitive touch, or no touch) you will have to uncomment the correct one. For example, if you are using the ESP32 TouchDown uncomment: "#define ENABLE_CAP_TOUCH". If you are using a DevKitC with separate TFT, uncomment "#define ENABLE_RES_TOUCH".

You can also set the scale of the y-axis of the graphs. This is done under "// The scale of the Y-axis per graph". If these are to big or to small, the data will not be displayed correctly on the graph. You might have to experiment with these.

Go ahead and upload the Bluetooth-System-Monitor.ino sketch to the ESP32. The settings under tools besides the Partition Scheme can be left to the default (see image). Go to "Sketch" and select "Upload". This may take a while because it is a large sketch.

tft display for esp32 free sample

An excellent new compatible library is available which can render TrueType fonts on a TFT screen (or into a sprite). This has been developed by takkaO and is available here. I have been reluctant to support yet another font format but this is an amazing library which is very easy to use. It provides access to compact font files, with fully scaleable anti-aliased glyphs. Left, middle and right justified text can also be printed to the screen. I have added TFT_eSPI specific examples to the OpenFontRender library and tested on RP2040 and ESP32 processors, however the ESP8266 does not have sufficient RAM. Here is a demo screen where a single 12kbyte font file binary was used to render fully anti-aliased glyphs of gradually increasing size on a 320x480 TFT screen:

The TFT configuration (user setup) can now be included inside an Arduino IDE sketch providing the instructions in the example Generic->Sketch_with_tft_setup are followed. See ReadMe tab in that sketch for the instructions. If the setup is not in the sketch then the library settings will be used. This means that "per project" configurations are possible without modifying the library setup files. Please note that ALL the other examples in the library will use the library settings unless they are adapted and the "tft_setup.h" header file included. Note: there are issues with this approach, #2007 proposes an alternative method.

Support has been added in v2.4.70 for the RP2040 with 16 bit parallel displays. This has been tested and the screen update performance is very good (4ms to clear 320 x 480 screen with HC8357C). The use of the RP2040 PIO makes it easy to change the write cycle timing for different displays. DMA with 16 bit transfers is also supported.

Support for the ESP32-S2, ESP32-S3 and ESP32-C3 has been added (DMA not supported at the moment). Tested with v2.0.3 RC1 of the ESP32 board package. Example setups:

Smooth fonts can now be rendered direct to the TFT with very little flicker for quickly changing values. This is achieved by a line-by-line and block-by-block update of the glyph area without drawing pixels twice. This is a "breaking" change for some sketches because a new true/false parameter is needed to render the background. The default is false if the parameter is missing, Examples:

New anti-aliased graphics functions to draw lines, wedge shaped lines, circles and rounded rectangles. Examples are included. Examples have also been added to display PNG compressed images (note: requires ~40kbytes RAM).

Frank Boesing has created an extension library for TFT_eSPI that allows a large range of ready-built fonts to be used. Frank"s library (adapted to permit rendering in sprites as well as TFT) can be downloaded here. More than 3300 additional Fonts are available here. The TFT_eSPI_ext library contains examples that demonstrate the use of the fonts.

Users of PowerPoint experienced with running macros may be interested in the pptm sketch generator here, this converts graphics and tables drawn in PowerPoint slides into an Arduino sketch that renders the graphics on a 480x320 TFT. This is based on VB macros created by Kris Kasprzak here.

The RP2040 8 bit parallel interface uses the PIO. The PIO now manages the "setWindow" and "block fill" actions, releasing the processor for other tasks when areas of the screen are being filled with a colour. The PIO can optionally be used for SPI interface displays if #define RP2040_PIO_SPI is put in the setup file. Touch screens and pixel read operations are not supported when the PIO interface is used.

The use of PIO for SPI allows the RP2040 to be over-clocked (up to 250MHz works on my boards) in Earle"s board package whilst still maintaining high SPI clock rates.

DMA can now be used with the Raspberry Pi Pico (RP2040) when used with both 8 bit parallel and 16 bit colour SPI displays. See "Bouncy_Circles" sketch.

The library now supports the Raspberry Pi Pico with both the official Arduino board package and the one provided by Earle Philhower. The setup file "Setup60_RP2040_ILI9341.h" has been used for tests with an ILI9341 display. At the moment only SPI interface displays have been tested. SPI port 0 is the default but SPI port 1 can be specifed in the setup file if those SPI pins are used.

The library now provides a "viewport" capability. See "Viewport_Demo" and "Viewport_graphicstest" examples. When a viewport is defined graphics will only appear within that window. The coordinate datum by default moves to the top left corner of the viewport, but can optionally remain at top left corner of TFT. The GUIslice library will make use of this feature to speed up the rendering of GUI objects (see #769).

An Arduino IDE compatible graphics and fonts library for 32 bit processors. The library is targeted at 32 bit processors, it has been performance optimised for STM32, ESP8266 and ESP32 types. The library can be loaded using the Arduino IDE"s Library Manager. Direct Memory Access (DMA) can be used with the ESP32, RP2040 and STM32 processors with SPI interface displays to improve rendering performance. DMA with a parallel interface is only supported with the RP2040.

For other processors the generic only SPI interface displays are supported and slower non-optimised standard Arduino SPI functions are used by the library.

"Four wire" SPI and 8 bit parallel interfaces are supported. Due to lack of GPIO pins the 8 bit parallel interface is NOT supported on the ESP8266. 8 bit parallel interface TFTs (e.g. UNO format mcufriend shields) can used with the STM32 Nucleo 64/144 range or the UNO format ESP32 (see below for ESP32).

The library supports some TFT displays designed for the Raspberry Pi (RPi) that are based on a ILI9486 or ST7796 driver chip with a 480 x 320 pixel screen. The ILI9486 RPi display must be of the Waveshare design and use a 16 bit serial interface based on the 74HC04, 74HC4040 and 2 x 74HC4094 logic chips. Note that due to design variations between these displays not all RPi displays will work with this library, so purchasing a RPi display of these types solely for use with this library is not recommended.

A "good" RPi display is the MHS-4.0 inch Display-B type ST7796 which provides good performance. This has a dedicated controller and can be clocked at up to 80MHz with the ESP32 (55MHz with STM32 and 40MHz with ESP8266). The MHS-3.5 inch RPi ILI9486 based display is also supported.

Some displays permit the internal TFT screen RAM to be read, a few of the examples use this feature. The TFT_Screen_Capture example allows full screens to be captured and sent to a PC, this is handy to create program documentation.

The library supports Waveshare 2 and 3 colour ePaper displays using full frame buffers. This addition is relatively immature and thus only one example has been provided.

The library includes a "Sprite" class, this enables flicker free updates of complex graphics. Direct writes to the TFT with graphics functions are still available, so existing sketches do not need to be changed.

A Sprite is notionally an invisible graphics screen that is kept in the processors RAM. Graphics can be drawn into the Sprite just as they can be drawn directly to the screen. Once the Sprite is completed it can be plotted onto the screen in any position. If there is sufficient RAM then the Sprite can be the same size as the screen and used as a frame buffer. Sprites by default use 16 bit colours, the bit depth can be set to 8 bits (256 colours) , or 1 bit (any 2 colours) to reduce the RAM needed. On an ESP8266 the largest 16 bit colour Sprite that can be created is about 160x128 pixels, this consumes 40Kbytes of RAM. On an ESP32 the workspace RAM is more limited than the datasheet implies so a 16 bit colour Sprite is limited to about 200x200 pixels (~80Kbytes), an 8 bit sprite to 320x240 pixels (~76kbytes). A 1 bit per pixel Sprite requires only 9600 bytes for a full 320 x 240 screen buffer, this is ideal for supporting use with 2 colour bitmap fonts.

One or more sprites can be created, a sprite can be any pixel width and height, limited only by available RAM. The RAM needed for a 16 bit colour depth Sprite is (2 x width x height) bytes, for a Sprite with 8 bit colour depth the RAM needed is (width x height) bytes. Sprites can be created and deleted dynamically as needed in the sketch, this means RAM can be freed up after the Sprite has been plotted on the screen, more RAM intensive WiFi based code can then be run and normal graphics operations still work.

Drawing graphics into a sprite is very fast, for those familiar with the Adafruit "graphicstest" example, this whole test completes in 18ms in a 160x128 sprite. Examples of sprite use can be found in the "examples/Sprite" folder.

If an ESP32 board has SPIRAM (i.e. PSRAM) fitted then Sprites will use the PSRAM memory and large full screen buffer Sprites can be created. Full screen Sprites take longer to render (~45ms for a 320 x 240 16 bit Sprite), so bear that in mind.

The "Animated_dial" example shows how dials can be created using a rotated Sprite for the needle. To run this example the TFT interface must support reading from the screen RAM (not all do). The dial rim and scale is a jpeg image, created using a paint program.

The XPT2046 touch screen controller is supported for SPI based displays only. The SPI bus for the touch controller is shared with the TFT and only an additional chip select line is needed. This support will eventually be deprecated when a suitable touch screen library is available.

The library supports SPI overlap on the ESP8266 so the TFT screen can share MOSI, MISO and SCLK pins with the program FLASH, this frees up GPIO pins for other uses. Only one SPI device can be connected to the FLASH pins and the chips select for the TFT must be on pin D3 (GPIO0).

The library contains proportional fonts, different sizes can be enabled/disabled at compile time to optimise the use of FLASH memory. Anti-aliased (smooth) font files in vlw format stored in SPIFFS are supported. Any 16 bit Unicode character can be included and rendered, this means many language specific characters can be rendered to the screen.

The library is based on the Adafruit GFX and Adafruit driver libraries and the aim is to retain compatibility. Significant additions have been made to the library to boost the speed for the different processors (it is typically 3 to 10 times faster) and to add new features. The new graphics functions include different size proportional fonts and formatting features. There are lots of example sketches to demonstrate the different features and included functions.

Configuration of the library font selections, pins used to interface with the TFT and other features is made by editing the User_Setup.h file in the library folder, or by selecting your own configuration in the "User_Setup_Selet,h" file. Fonts and features can easily be enabled/disabled by commenting out lines.

Anti-aliased (smooth) font files in "vlw" format are generated by the free Processing IDE using a sketch included in the library Tools folder. This sketch with the Processing IDE can be used to generate font files from your computer"s font set or any TrueType (.ttf) font, the font file can include any combination of 16 bit Unicode characters. This means Greek, Japanese and any other UCS-2 glyphs can be used. Character arrays and Strings in UTF-8 format are supported.

The .vlw files must be uploaded to the processors FLASH filing system (SPIFFS, LittleFS or SD card) for use. Alternatively the .vlw files can be converted to C arrays (see "Smooth Font -> FLASH_Array" examples) and stored directly in FLASH as part of the compile process. The array based approach is convenient, provides performance improvements and is suitable where: either use of a filing system is undesirable, or the processor type (e.g. STM32) does not support a FLASH based filing system.

It would be possible to compress the vlw font files but the rendering performance to a TFT is still good when storing the font file(s) in SPIFFS, LittleFS or FLASH arrays.

Anti-aliased fonts can also be drawn over a gradient background with a callback to fetch the background colour of each pixel. This pixel colour can be set by the gradient algorithm or by reading back the TFT screen memory (if reading the display is supported).

The common 8 bit "Mcufriend" shields are supported for the STM Nucleo 64/144 boards and ESP32 UNO style board. The STM32 "Blue/Black Pill" boards can also be used with 8 bit parallel displays.

Unfortunately the typical UNO/mcufriend TFT display board maps LCD_RD, LCD_CS and LCD_RST signals to the ESP32 analogue pins 35, 34 and 36 which are input only. To solve this I linked in the 3 spare pins IO15, IO33 and IO32 by adding wires to the bottom of the board as follows:

If the display board is fitted with a resistance based touch screen then this can be used by performing the modifications described here and the fork of the Adafruit library:

If you load a new copy of TFT_eSPI then it will overwrite your setups if they are kept within the TFT_eSPI folder. One way around this is to create a new folder in your Arduino library folder called "TFT_eSPI_Setups". You then place your custom setup.h files in there. After an upgrade simply edit the User_Setup_Select.h file to point to your custom setup file e.g.:

You can take this one step further and have your own setup select file and then you only need to replace the Setup.h line reference in User_Setup_Select.h to, for example:

The library was intended to support only TFT displays but using a Sprite as a 1 bit per pixel screen buffer permits support for the Waveshare 2 and 3 colour SPI ePaper displays. This addition to the library is experimental and only one example is provided. Further examples will be added.

tft display for esp32 free sample

//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)

tft display for esp32 free sample

This module is the 3.2” version of the ESP32 touchscreen display, based on ESP32-WROVER, with a built-in 2M pixel OV2640 camera. The LCD is 320x240 TFT, with driver is ILI9341, it uses SPI for communication with ESP32, the SPI main clock could be up to 60M~80M, make the display smooth enough for videos; and the camera OV2640 with pixel 2M, with this camera, you can make applications such as remote photography, face recognition…

While the camera not used, you can freely use all these pins with the breakout connectors, to connect the ESP32 display with sensors/ actuators, suitable for IoT applications.

tft display for esp32 free sample

This tutorial shows how to use the I2C LCD (Liquid Crystal Display) with the ESP32 using Arduino IDE. We’ll show you how to wire the display, install the library and try sample code to write text on the LCD: static text, and scroll long messages. You can also use this guide with the ESP8266.

Before displaying text on the LCD, you need to find the LCD I2C address. With the LCD properly wired to the ESP32, upload the following I2C Scanner sketch.

After uploading the code, open the Serial Monitor at a baud rate of 115200. Press the ESP32 EN button. The I2C address should be displayed in the Serial Monitor.

Displaying static text on the LCD is very simple. All you have to do is select where you want the characters to be displayed on the screen, and then send the message to the display.

The next two lines set the number of columns and rows of your LCD display. If you’re using a display with another size, you should modify those variables.

Then, you need to set the display address, the number of columns and number of rows. You should use the display address you’ve found in the previous step.

To display a message on the screen, first you need to set the cursor to where you want your message to be written. The following line sets the cursor to the first column, first row.

Scrolling text on the LCD is specially useful when you want to display messages longer than 16 characters. The library comes with built-in functions that allows you to scroll text. However, many people experience problems with those functions because:

The messageToScroll variable is displayed in the second row (1 corresponds to the second row), with a delay time of 250 ms (the GIF image is speed up 1.5x).

In a 16×2 LCD there are 32 blocks where you can display characters. Each block is made out of 5×8 tiny pixels. You can display custom characters by defining the state of each tiny pixel. For that, you can create a byte variable to hold  the state of each pixel.

In summary, in this tutorial we’ve shown you how to use an I2C LCD display with the ESP32/ESP8266 with Arduino IDE: how to display static text, scrolling text and custom characters. This tutorial also works with the Arduino board, you just need to change the pin assignment to use the Arduino I2C pins.

We hope you’ve found this tutorial useful. If you like ESP32 and you want to learn more, we recommend enrolling in Learn ESP32 with Arduino IDE course.

tft display for esp32 free sample

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

tft display for esp32 free sample

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

tft display for esp32 free sample

The ST7789 TFT module contains a display controller with the same name: ST7789. It’s a color display that uses SPI interface protocol and requires 3, 4 or 5 control pins, it’s low cost and easy to use. This display is an IPS display, it comes in different sizes (1.3″, 1.54″ …) but all of them should have the same resolution of 240×240 pixel, this means it has 57600 pixels. This module works with 3.3V only and it doesn’t support 5V (not 5V tolerant).

The ST7789 display module shown in project circuit diagram has 7 pins: (from right to left): GND (ground), VCC, SCL (serial clock), SDA (serial data), RES (reset), DC (or D/C: data/command) and BLK (back light).

As mentioned above, the ST7789 TFT display controller works with 3.3V only (power supply and control lines). The display module is supplied with 3.3V (between VCC and GND) which comes from the Arduino board.

To connect the Arduino to the display module, I used voltage divider for each line which means there are 4 voltage dividers. Each voltage divider consists of 2.2k and 3.3k resistors, this drops the 5V into 3V which is sufficient.

The first library is a driver for the ST7789 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “st7789” and install the one from Adafruit).

tft display for esp32 free sample

TFT_display_init() Perform display initialization sequence. Sets orientation to landscape; clears the screen. SPI interface must already be setup, tft_disp_type, _width, _height variables must be set.

compile_font_file Function which compiles font c source file to binary font file which can be used in TFT_setFont() function to select external font. Created file has the same name as source file and extension .fnt

tft display for esp32 free sample

FreeTouchDeck uses the SPIFFS (ESP32 flash memory) to store configuration and images that are used. You"ll need to upload these to the ESP32 before you upload the sketch to the ESP32. For this you"ll need the ESP32 Sketch Data Upload tool. You can download this from Github: "https://github.com/me-no-dev/arduino-esp32fs-plugin". Follow the instructions on the Github to install the tool:

On Github you can find the full source code for FreeTouchDeck. If you haven"t already, ro to the FreeTouchDeck Github repository (https://github.com/DustinWatts/FreeTouchDeck) and click "Code" and "Download .ZIP"

**Since version 0.9.11 the next step is no longer necessary! You can still edit this if you want but if you do not edit the config before uploading, if you start the configurator and it can"t connect to an Access Point it will start one. You can then enter the configurator and edit you wifi settings in there.**

After the data folder is successfully uploaded, you can go ahead and upload the FreeTouchDeck.ino sketch to the ESP32. The settings under tools besides the Partition Scheme can be left to the default.

tft display for esp32 free sample

We have used Liquid Crystal Displays in the DroneBot Workshop many times before, but the one we are working with today has a bit of a twist – it’s a circle!  Perfect for creating electronic gauges and special effects.

LCD, or Liquid Crystal Displays, are great choices for many applications. They aren’t that power-hungry, they are available in monochrome or full-color models, and they are available in all shapes and sizes.

Today we will see how to use this display with both an Arduino and an ESP32. We will also use a pair of them to make some rather spooky animated eyeballs!

Waveshare actually has several round LCD modules, I chose the 1.28-inch model as it was readily available on Amazon. You could probably perform the same experiments using a different module, although you may require a different driver.

There are also some additional connections to the display. One of them, DC, sets the display into either Data or Command mode. Another, BL, is a control for the display’s backlight.

The above illustration shows the connections to the display.  The Waveshare display can be used with either 3.3 or 5-volt logic, the power supply voltage should match the logic level (although you CAN use a 5-volt supply with 3.3-volt logic).

Another difference is simply with the labeling on the display. There are two pins, one labeled SDA and the other labeled SCL. At a glance, you would assume that this is an I2C device, but it isn’t, it’s SPI just like the Waveshare device.

This display can be used for the experiments we will be doing with the ESP32, as that is a 3.3-volt logic microcontroller. You would need to use a voltage level converter if you wanted to use one of these with an Arduino Uno.

The Arduino Uno is arguably the most common microcontroller on the planet, certainly for experiments it is. However, it is also quite old and compared to more modern devices its 16-MHz clock is pretty slow.

The Waveshare device comes with a cable for use with the display. Unfortunately, it only has female ends, which would be excellent for a Raspberry Pi (which is also supported) but not too handy for an Arduino Uno. I used short breadboard jumper wires to convert the ends into male ones suitable for the Arduino.

Once you have everything hooked up, you can start coding for the display. There are a few ways to do this, one of them is to grab the sample code thatWaveshare provides on their Wiki.

The Waveshare Wiki does provide some information about the display and a bit of sample code for a few common controllers. It’s a reasonable support page, unfortunately, it is the only support that Waveshare provides(I would have liked to see more examples and a tutorial, but I guess I’m spoiled by Adafruit and Sparkfun LOL).

Open the Arduino folder. Inside you’ll find quite a few folders, one for each display size that Waveshare supports. As I’m using the 1.28-inch model, I selected theLCD_1inch28folder.

You can see from the code that after loading some libraries we initialize the display, set its backlight level (you can use PWM on the BL pin to set the level), and paint a new image. We then proceed to draw lines and strings onto the display.

Unfortunately, Waveshare doesn’t offer documentation for this, but you can gather quite a bit of information by reading theLCD_Driver.cppfile, where the functions are somewhat documented.

After uploading the code, you will see the display show a fake “clock”. It’s a static display, but it does illustrate how you can use this with the Waveshare code.

This library is an extension of the Adafruit GFX library, which itself is one of the most popular display libraries around. Because of this, there isextensive documentation for this libraryavailable from Adafruit.  This makes the library an excellent choice for those who want to write their own applications.

As with the Waveshare sample, this file just prints shapes and text to the display. It is quite an easy sketch to understand, especially with the Adafruit documentation.

The sketch finishes by printing some bizarre text on the display. The text is an excerpt from The Hitchhiker’s Guide to the Galaxy by Douglas Adams, and it’s a sample of Vogon poetry, which is considered to be the third-worst in the Galaxy!

Here is the hookup for the ESP32 and the GC9A01 display.  As with most ESP32 hookup diagrams, it is important to use the correct GPIO numbers instead of physical pins. The diagram shows the WROVER, so if you are using a different module you’ll need to consult its documentation to ensure that you hook it up properly.

The TFT_eSPI library is ideal for this, and several other, displays. You can install it through your Arduino IDE Library Manager, just search for “TFT_eSPI”.

There is a lot of demo code included with the library. Some of it is intended for other display sizes, but there are a few that you can use with your circular display.

To test out the display, you can use theColour_Test sketch, found inside the Test and Diagnostic menu item inside the library samples.  While this sketch was not made for this display, it is a good way to confirm that you have everything hooked up and configured properly.

A great demo code sample is theAnimated_dialsketch, which is found inside theSpritesmenu item.  This demonstration code will produce a “dial” indicator on the display, along with some simulated “data” (really just a random number generator).

In order to run this sketch, you’ll need to install another library. Install theTjpeg_DecoderLibrary from Library Manager. Once you do, the sketch will compile, and you can upload it to your ESP32.

One of my favorite sketches is the Animated Eyes sketch, which displays a pair of very convincing eyeballs that move. Although it will work on a single display, it is more effective if you use two.

The first thing we need to do is to hook up a second display. To do this, you connect every wire in parallel with the first display, except for the CS (chip select) line.

The Animated Eyes sketch can be found within the sample files for the TFT_eSPI library, under the “generic” folder.  Assuming that you have wired up the second GC9A01 display, you’ll want to use theAnimated_Eyes_2sketch.

The GC9A01 LCD module is a 1.28-inch round display that is useful for instrumentation and other similar projects. Today we will learn how to use this display with an Arduino Uno and an ESP32.

tft display for esp32 free sample

To get the screen on the LilyGO TTGO T-display ESP32 running need the TFT_eSPI library. This is a "graphics and fonts library for ESP8266 and ESP32 processors with drivers for ILI9341, ILI9163, ST7735, S6D02A1, ILI9481, ILI9486, ILI9488, HX8357D and ST7789 based TFT displays that support SPI".

Whilst you can install the library with the Library manager of Arduino I would advise you to install the version from Github. In that way you can be sure you get the newest version. You will be able to update the library within the Library manager or overwrite the old files manually. Be sure to check whether the manual changes you have to made are still there after an update (see below at "Configure the TFT_eSPI library to use the ST7789V in the correct way")!

Manually installGo to https://github.com/Bodmer/TFT_eSPI/releases and download the Source code (ZIP) of the newest release or if you want even a newer unreleased version you can download the library by clicking on Clone or download on the upper right corner on https://github.com/Bodmer/TFT_eSPI.

Save the file TTGO_T_Display.h to the folder User_setups of the TFT_eSPI library you just installed. Most likely this will be C:\Users\[username]\Documents\Arduino\libraries\TFT_eSPI-master\User_Setups

This library is only needed for the demo sketch of LilyGO. If you prefer another library for handling the button presses you are free to use so. I personally like the Button 2 library. It does fit my needs quite well.

tft display for esp32 free sample

I wanted to try these ST7735 inexpensive displays that can be found all over the internet, so I ordered a couple for a few euros each. My quick research showed that a number of libraries support them and it turns out that you can display anything you want. Of course, we are not talking about playing modern games on it or watching 4k videos. These are just simple displays that can be really helpful to any project.

I used an older version of ESP32, the DEVKITV1, and actually the smaller version with the 30 pins. If you have a different one please try to find the correct pinout because they differ. Here is the pinout diagram from mine

And here is how the TFT looks. As you see it also has a port for an SD card if you want to use e.g. for reading images from it. In my case, I didn’t connect it.

Once you have the connections ready next step is to install the TFT library in your Arduino IDE. Go to Tools – > Manage Libraries and then search for TFT_eSPI and click install. Alternatively, crab the lib from here.

After this, you can pick any of the examples from the library to upload to your ESP32 microcontroller. Some of them are really nice. For testing, I connected a DHT11 temperature/humidity sensor and I displayed the readings in the ST7735. Sweet!

The code is not 100% as I need to find a better way to update the screen instead of filling the whole screen with black background before an update. There is documentation about it here https://learn.adafruit.com/adafruit-gfx-graphics-library/graphics-primitives I need to go through it.

Also as you can see I am using a custom font for the text so you will need to include the Final_Frontier_28.h file. It will probably be easier to change the code from the example Print_Smooth_Font. This is what I did any.

tft display for esp32 free sample

This quick start guide describes how to use Husarnet VPN Client software library on ESP32 Wi-Fi microcontrollers and how to configure a network using Husarnet Dashboard in a few easy steps.

If you want to connect to your ESP32 from your computer, you need to install a Husarnet client there too. Have a look at the tutorials in the "Getting started" section and find one for your platform. If you already created a network - use the same one!

In the [Examples] tab you"ll see a couple of examples we"ve prepared for you. There"s a special one we need to use for all of the others though. Let"s start with it.

On the screenshot you"ll see that there"s an env section selected. Copy it and paste it at the top of your project"s platformio.ini file. It should look something like this now:

In the examples you"ll find a section for some deployment specific settings. Things like WiFi name and password, but also some of the Husarnet"s settings. Let"s go through them.

This is the code that you generated at the dashboard earlier. Paste it here. You can use the same code multiple times for different devices as long as you don"t generate a new one in the dashboard. If you do all previous ones will be invalidated.

This setting is for deployments were you are running your own Husarnet server. As we"re using the public one in this tutorial, leave "default" as the value.

Feel free to compile and upload the code to your board now. Connecting to the network for the first time takes a couple of seconds and after that you should see your new device as "Online" in the dashboard. (Go to the "Networks" tab and then click on the network you created in the first step.)

If, for some reason, the code does not compile, look at the "Minimal setup" at the bottom of this tutorial and check whether your project has all the required settings and code.

This example makes your ESP32 start a simple HTTP/web-server. It will be available both on the local network and via the Husarnet. You"ll find the addres of your device in the dashboard. Put http://[ip_of_your_device] in your browser"s address bar (including the brackets - that"s the way you tell IPv6 addresses to your browser) and… voila. You should get a message from your ESP32 now!

This example can be used if you have a module supported by esp32cam. It starts a webserver on http://[your-device]:8000/stream that is serving the live stream from the camera in the MJPEG format. Plain and simple.

This example is more of a proof of concept rather than a standalone application. Let"s assume that you have a couple of devices, connected via Husarnet that you want to monitor and control from a single place. The classic way of achieving it would be to setup additional server, write a dedicated dashboard application and connect to it directly. This example presents a completely different approach as it makes your ESP32 serve a dashboard consisting of components loaded directly from other nodes on the network. Oh. And it auto-detects the nodes automatically. This way each time you add or remove a device from your network you don"t have to reconfigure or update other nodes. You can, as usual, connect to any node on the network and see the updated version of a dashbaord almost instantly. The important part here is that your devices don"t have to be homogeneous. You can have different sets of components on each node, implementing completely different features and you won"t need to update all your devices in order to add those to your network.

Each of the nodes in the network is serving a special file called data.json. It has two basic purposes 1) list other nodes on the network 2) list components for this given node. This way Java Script in your browser can do all the heavy lifting. First it calls your node for data.json and gets a list of other nodes, then it asks each node for that same file. If your node does not respond (for example your laptop is not expected to respond in this example) - it ignores it and continues, but if it responds with a valid data, it loads and renders specified components in your browser.

Code for generating 1) is pretty much done - we don"t expect you to change it a lot, but you"re free to change the data for 2). You"ll find in the next paragraph what can you do with that.

You"ll also see pairs of files something.js and something.html. Each of those pairs defines a single component. In this particular example those are stream and stream-led. .js file is responsible for declaring and registering the component JS-wise. This is absolutely crucial for autodetection and autoload to work. One important caveat here is that each of the components should have a unique "slug". It needs to be the same in the file path, data.json, component"s tag and url and window.component dict key, otherwise things won"t render properly. The .html file is basically the content of the component"s iframe. You can organize it any way you like, but you must include the zoid"s and your component"s .js files.

There"s one caveat though - ESP32 network stack has a limited number of simultaneous connections available so you need to stay as low as possible for this example to work reliably. One way of dealing with that is using some kind of CDN or an external server tor static files and leaving only dynamic files to be served by ESP32 - there"s an example for that near the STATIC_BASE_URL definition in main.cpp. Whether you use it it"s completely up to you.

In order to use Husarnet on ESP32 you need a special version of arduino-esp32 framework we"ve prepared for you. (Hopefully this is a temporary requirement and we will be able to migrate to the mainline version soon.)

platform = espressif32@2.1.0framework = arduinoplatform_packages =framework-arduinoespressif32 @ https://github.com/husarnet/arduino-esp32/releases/download/1.0.4-1/arduino-husarnet-esp32.ziplib_deps =Husarnet ESP32

// You need to include our header files#include// Setup some credentials// This will be visible on the dashboardconstchar*hostName="awesome-device";// You"ll get one in the dashboard. See how on docs.husarnet.comconstchar*husarnetJoinCode="fc94:b01d:1803:8dd8:f33d:0a11:c475:c4fe/xxxxxxxxxxxxxxxxxx";// If you want to use the instance hosted by us - leave it as is// If you"re hosting your own - change it to proper URLconstchar*dashboardURL="default";voidsetup(){// Setup your code here as you wish, but don"t forget to connect to Wi-Fi first!// Connect to he Husarnet"s networkHusarnet.selfHostedSetup(dashboardURL);Husarnet.join(husarnetJoinCode,hostName);Husarnet.start();// Note that connecting to the Husarnet"s network takes a couple of seconds// and takes place asynchronously.}voidloop(){// There are no special requirements on how you can use the loop.// Husarnet"s code is running in the background and you can use it as if your// ESP had an additional network connection, straight to your VPN!}

Just clone the following projects, open in Visual Studio Code with Platformio and all configuration is there by default:Minimal Web Server - AsyncTCP Webserver