tft display means in hindi price

आपके स्मार्टफोन की डिस्प्ले के बारे में आप कितना जानते हैं? डिस्प्ले के नाम जैसे कि AMOLED, OLED, LCD, TFT के बारे में आप कितना विस्तार से जानते हैं? इनके नाम बहुत छोटे हैं, लेकिन इनमें से कौन-सा बेहतर है, किस रिफ्रेश रेट के साथ आता है, रेज़ॉल्यूशन कितना है इन सब सवालों को जानकर यदि आप अपने लिए स्मार्टफोन चुनना चाहते हैं तो आपके इन सभी प्रश्नों के उत्तर मिलेंगे यहाँ।

पिछले कुछ सालों में स्मार्टफोन की डिस्प्ले काफी बेहतर हुई हैं। लेकिन प्रत्येक स्मार्टफोन डिस्प्ले के साथ जो शार्ट-फॉर्म एक संक्षिप्त नाम जुड़ता है, जैसे कि AMOLED, LCD, इत्यादि वो केवल नाम नहीं बल्कि अपने आप में एक तकनीक है। स्मार्टफोन पर लगे पैनल AMOLED, OLED, LED, LCD, IPS, TFT, LTPS, इत्यादि होते हैं। ये सभी पूर्णत: अलग होते हैं।

पहले ही इतने टाइप के पैनल मौजूद हैं, ऐसे में स्मार्टफोन निर्माता द्वारा फैंसी नामों का इस्तेमाल जैसे कि Apple द्वारा Super Retina XDR और Samsung द्वारा Dynamic AMOLED ग्राहकों के बीच भ्रम या असमंजस को और बढ़ा देता है।

डिस्प्ले के टाइप तो बहुत सारे हैं जैसे कि TFT, LTPS, AMOLED, OLED, IPS, LCD इत्यादि। लेकिन इन दिनों TFT, LTPS जैसी डिस्प्ले काफी कम हो गयीं हैं। किफ़ायती दामों पर और मिड-रेंज में आने वाले फोनों में आपको IPS LCD डिस्प्ले मिलेगी। लेकिन इन सबका विस्तार से समझें, तो मतलब क्या है ?

अगर संक्षिप्त रूप से और आसान भाषा में समझें तो दो तरह की टेक्नोलॉजी- एलसीडी (LCD) और ओलेड (OLED) बाज़ार में आ रहीं हैं। प्रत्येक में कुछ विभिन्न प्रकार और जनरेशन हैं जो बाकी के स्क्रीन टाइप शार्ट फॉर्म को बनाती हैं। इसी तरह टेलीविज़न की दुनिया में भी अलग स्क्रीन टाइप उपलब्ध हैं जैसे कि LED, QLED, miniLED – ये सब दरसअल एलसीडी (LCD) तकनीक के ही अलग अलग रूप हैं जिनमें थोड़ी विविधताएं हैं।

LCD का मतलब या फुल फॉर्म है लिक्विड क्रिस्टल डिस्प्ले (Liquid Crystal Display)। इसमें लिक्विड क्रिस्टल्स की एक श्रंखला दी जाती है जिसके पीछे एक बैकलाइट होती है। इस डिस्प्ले टाइप का हर जगह आसानी से उपलब्ध होना और कम दामों में इसका निर्माण इसे स्मार्टफोनों के लिए एक प्रचलित विकल्प या पसंद बनाता है।

स्मार्टफोनों में आपको दोनों डिस्प्ले TFT और IPS मिलती हैं। TFT का फुल फॉर्म है – Thin Film Transistor, जो LCD का ही एक बेहतर या एडवांस्ड वर्ज़न है, जो एक एक्टिव मैट्रिक्स (active matrix) का इस्तेमाल करता है। active matrix का अर्थ है कि प्रत्येक पिक्सेल एक अलग ट्रांजिस्टर और कपैसिटर से जुड़ा होता है।

TFT डिस्प्ले का सबसे बड़ा फायदा यही है कि इसके प्रोडक्शन में तुलनात्मक कम खर्च होता है और इसमें असल LCD के मुकाबले ज्यादा कॉन्ट्रास्ट मिलता है। वहीं TFT LCD में नुकसान ये है कि इन्हें रेगुलर LCD प्रकारों के मुकबाले ज्यादा एनर्जी यानि बैटरी चाहिए, इनके व्यूिंग एंगल और रंग भी इतने अच्छे नहीं होते। इन्हीं सब कारणों से बाकी डिस्प्ले विकल्पों की गिरती कीमतों के कारण अब TFT डिस्प्ले का इस्तेमाल स्मार्टफोनों में नहीं किया जाता।

TFT(Thin Film Transistor) – ये भी LCD डिस्प्ले का ही एक प्रकार है जिसमें नीचे एक पतली सेमीकंडक्टर की परत होती है जो हर एक पिक्सल पर रंगों को नियंत्रित करने का काम करता है। इसका और AMOLED में आने वाले AM यानि कि active matrix का काम लगभग एक ही है।

LTPS(Low Temperature PolySilicon) – ये भी Si (amorphous silicon) तकनीक पर आधारित TFT का ही वैरिएंट है जिसमें आपको हाई रेज़ॉल्यूशन मिलता है और ऊर्जा यानि कि पॉवर साधारणत: TFT से कम लेता है।

IGZO(Indium Gallium Zinc Oxide) – ये भी एक सेमिकंडक्टर मैटेरियल है जो डिस्प्ले के नीचे लगी फिल्म में इस्तेमाल होता है और आजकल a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO( Low Temperature Polycrystaline Oxide) – इस टेक्नोलॉजी को Apple ने डेवेलप किया है और इसे वर्तमान समय में OLED और LCD दोनों तरह की स्क्रीन में इस्तेमाल किया जाता है। इसमें LTPS और IGZO दोनों तकनीकों का इस्तेमाल मिलाकर किया जाता है और नतीजा होता है – डिस्प्ले द्वारा पॉवर का कम इस्तेमाल। ये Apple Watch 4 और Galaxy S21 Ultra में आयी है।

IPS तकनीक को In-Plane Switching तकनीक कहते हैं। IPS टेक्नोलॉजी ने सबसे पहले आयी LCD डिस्प्ले में आने वाली समस्या को दूर किया जिसमें TN तकनीक का इस्तेमाल होता था और इसमें साइड से देखने पर रंग बहुत ख़राब नज़र आते थे। ये कमी ज़्यादातर सस्ते स्मार्टफोन और टैबलेटों में नज़र आया करती थी।

PLS (Plane to Line Switching) – PLS और IPS के नाम या उनके फुल फॉर्म लगभग एक ही जैसे लगते हैं। लेकिन इसमें आश्चर्य की कोई बात नहीं है क्योंकि इनका मुख्य कार्य भी एक समान ही है। PLS टेक्नोलॉजी को Samsung Display द्वारा बनाया गया है और IPS डिस्प्ले की ही तरह इसकी विशेषता भी डिस्प्ले पर अच्छे रंग दर्शाना और बेहतर व्यूइंग एंगल दिखाना ही हैं। लेकिन इसमें OLED और LCD/VA डिस्प्ले के मुकाबले कॉन्ट्रास्ट थोड़ा कम है।

Samsung Display का कहना है कि PLS पैनलों के उत्पादन में लागत कम लगती है, ब्राइटनेस लेवल अच्छा मिलता है और प्रतियोगी कंपनी LG Display के IPS पैनलों के मुकाबले व्यूइंग एंगल भी काफी अच्छे मिलते हैं। अंतत: PLS पैनल का उपयोग किया जाए या IPS पैनल का इस्तेमाल करें, ये पूरी तरह से स्मार्टफोन निर्माताओं पर निर्भर करता है।

AMOLED की फुल फॉर्म – एक्टिव मैट्रिक्स ऑर्गेनिक लाइट एमिटिंग डायोड (Active Matrix Organic Light-Emitting Diode) है। हालांकि ये सुनने में बहुत मुश्किल नाम लग रहा होगा, लेकिन ये है नहीं। हम पहले ही TFT LCD टेक्नोलॉजी में एक्टिव मैट्रिक्स के बारे में पढ़ चुके हैं और अब रहा OLED, तो ये केवल एक पतली फिल्म वाली डिस्प्ले तकनीक है और कुछ नहीं।

OLED को- Organic Light Emitting Diode कहते हैं। एक OLED डिस्प्ले electroluminescent मैटीरियल की पतली शीट से बनी होती है, जिसका सबसे बड़ा फायदा यही है कि ये अपनी रौशनी खुद पैदा करते हैं और इन्हें बैकलाइट की ज़रुरत नहीं पड़ती, जिससे ऊर्जा या बिजली की ज़रुरत कम पड़ती है। यही OLED स्क्रीन जब स्मार्टफोन या टीवी के लिए उपयोग होती है तो इसे ज़्यादातर AMOLED डिस्प्ले के नाम से जाना जाता है।

पिक्सल डेंसिटी की बात करें तो, 2010 में iPhone 4 के लॉन्च के समय Apple का मुख्य आकर्षण यही था। इस स्मार्टफोन डिस्प्ले में कंपनी ने LCD डिस्प्ले का इस्तेमाल किया। इस LCD पैनल ((LED, TFT, और IPS) को हाई रेज़ॉल्यूशन (उस समय पर 960 X 640 पिक्सल्स) के साथ Retina Display का नाम दिया। इस फ़ोन में 3.5 इंच की डिस्प्ले थी।

उस समय पर Apple के मार्केटिंग डिपार्टमेंट ने Retina Display नाम इसलिए चुना क्योंकि कंपनी के अनुसार एक निश्चित दूरी से हमारी या किसी भी इंसान की आंखें अलग-अलग पिक्सल में फर्क नहीं कर पाती। iPhones के केस में, ये नाम तब इस्तेमाल होता था जब फ़ोन की डिस्प्ले पर 300 ppi (pixel per inch) से ज्यादा होती थी।

तब से, अन्य स्मार्टफोन बनाने वाली कंपनियों ने भी यही तरीका अपनाया और हाई रेज़ॉल्यूशन वाले पैनलों को अपनाना शुरू कर दिया। जबकि iPhone 12 Mini में 476 dpi और Sony Xperia 1 में 643 dpi मिलती है।

जब सबने हाई रेज़ॉल्यूशन के साथ डिस्प्ले लेना आरम्भ कर दिया, फिर Apple ने खुद को भीड़ में अलग करने के लिए अपने प्रीमियम स्मार्टफोनों में इस्तेमाल होने वाली OLED डिस्प्ले को “Super Retina” का नाम दे दिया। ये डिस्प्ले iPhone X और उसके बाद आने वाले फोनों में आयी है। ये डिस्प्ले हाई कॉन्ट्रास्ट रेट और डिस्प्ले पर रंगों की सटीकता के लिए जानी जाती है, और ऐसी ही स्क्रीन Samsung के S-सीरीज़ के स्मार्टफोनों में भी आप देख सकते हैं।

इसके बाद कंपनी ने iPhone 11 Pro के साथ डिस्प्ले का नया नाम भी लॉन्च किया – “Super Retina XDR”। इसमें भी वही OLED पैनल का उपयोग किया गया है, लेकिन इसे पैनल का निर्माण Samsung Display या LG Display द्वारा हुआ है। इसमें आपको 2,000,000:1 रेश्यो के साथ और भी बेहतर कॉन्ट्रास्ट लेवल और 1200 nits की ब्राइटनेस मिलते हैं और ये ख़ासकर HDR कंटेंट के लिए अनुकूल हैं।

वहीं iPhone XR और iPhone 11 के ग्राहकों को भी खुश रखने के लिए कंपनी ने इनमें आने वाले LCD पैनल को “Liquid Retina” का नाम दे दिया। बाद में यही डिस्प्ले कंपनी स्टैण्डर्ड के अनुसार बेहतर रेज़ॉल्यूशन और सही रंगों के साथ iPad Pro और iPad Air मॉडल में भी आया।

अंतरराष्ट्रीय प्रणाली या सिस्टम में Nit या कैंडेला प्रति वर्ग मीटर (candela per square meter), जलने या निकलने वाली रौशनी की तीव्रता या गहनता (intensity) को मापने की यूनिट है। अधिकतर स्मार्टफोन, टैबलेट, मॉनिटर के बारे में जब हम बात करते हैं तो ये यूनिट बताती है कि डिस्प्ले कितना ब्राइट है। इसकी वैल्यू जितनी ज्यादा होगा, डिस्प्ले पर पिछले से पड़ने वाली रौशनी की तीव्रता भी उतनी ही ज्यादा होगी।

टेलीविज़न की दुनिया में, miniLED के बारे में हम जान चुके हैं और ये फ़ीचर या तकनीक टीवी में हम देखते ही आ रहे हैं। इसमें बैकलाइट में लाइटिंग ज़ोन का नंबर बढ़ा दिया जाता है। लेकिन अब अफवाहों और कई ख़बरों के अनुसार स्मार्टफोनों और स्मार्टवॉच में भी कंपनियां microLED टेक्नोलॉजी जल्दी ही लेकर आ सकती हैं। ये टेक्नोलॉजी या पैनल LCD/LED से काफी अलग है क्योंकि ये OLED डिस्प्ले की तरह ही बारीकियों के साथ अच्छी पिक्चर क्वॉलिटी देती है।

microLED डिस्प्ले में हर एक सब-पिक्सल में एक अलग रौशनी देने वाला डायोड होता है – अधिकतर ये एक लाल, हरे और नीले डायोड का एक सेट होता है जो एक डॉट के लिए होता है । माना जा रहा है कि microLED में इस बार किसी तरह की अजैविक (inorganic) मैटेरियल का इस्तेमाल होगा जैसे कि gallium nitride (GaN)।

खुद अपनी रौशनी छोड़ने वाला पिक्सल यानि कि self-emitting light जैसी तकनीक अपनाने के साथ, microLED डिस्प्ले में भी बैकलाइट की ज़रूरत नहीं होती। इसमें भी आपको OLED जैसे ही हाई कॉन्ट्रास्ट के साथ पिक्चर देखने को मिलेंगी और साथ ही इसमें ऑर्गेनिक डायोड की तरह स्क्रीन बर्न-इन जैसी समस्याओं का डर भी नहीं है।

वहीँ इनकी ख़ामियों की बात करें तो, इनको बनाने में काफी ज़्यादा लागत लगती है और कॉम्पोनेन्ट की पूर्ती करने वाली कंपनियां भी सीमित ही हैं। इनमें Samsung Display, LG Display और तीसरे नंबर पर चीन की इलेक्ट्रॉनिक्स कंपनी BOE और कुछ एक जो OLED की मांग को पूरा करते हैं। जबकि LCD पैनल बनाने वाली काफी कम्पनियां हैं।

इसके अलावा एक और बात जो हम यहां जोड़ना चाहते हैं, समय के साथ OLED स्क्रीन के ऑर्गेनिक डायोड अपनी चमक या कहें कि योग्यता खो देते हैं और ये तब होता है जब एक ही तस्वीर ज्यादा समय तक डिस्प्ले होती है। इसे कपनियां “burn-in” का नाम देती हैं।

tft display means in hindi price

आजकल बाज़ार में कई प्रकार के डिस्प्ले मौजूद हैं, जिस वजह से कुछ लोग कन्फ्यूजन में होते है कि किस प्रकार का Display वाला स्मार्टफोन लेना चाहिए, इन Displays का उपयोग बहुत से प्रोडक्ट्स में किया जाता है जैसे कि कंप्यूटर, मोबाइल स्मार्ट वाच आदि आदि.

AMOLED, OLED का ही Advanced Version है जिसका फुल-फॉर्म है Active Matrix Organic Light Emitting Diode. दोनों एक ही Machenism पर काम करते हैं इन Dispalys में Backlight नहीं होती इसके हर Pixels में खुद का एक Transister लगा होता है जिसकी वजह से Display के जिन जगहों पर Colours की जरुरत होती, Pixels वहीं की Light को ON करते है,

AMOLED डिस्प्ले मे रंग वास्तविक तो नहीं मिलते लेकिन थोड़ा Vibrant और Over Saturated Colour रहता है जो हमारे इंसानी आंखो को अत्यधिक प्रिय लगते है. ये Display बहुत ही लचीली होती है अतः जल्दी टूटती नहीं और कभी टूट गयी तो बनवाना थोड़ा महंगा पड़ जाता है।

OLED डिस्प्ले उपर के 3 Displays से अच्छे रंग दिखाता है इस वजह से कुछ महंगा है, OLED Display थोडा पतला होने के साथ साथ इसका View Angle भी अच्छा होता है,

पिछले कुछ वर्षों तक सारे Display, LCD टेक्नोलॉजी पर काम करते थे लेकिन इसका Machenism थोड़ा अलग है OLED में आपको कोई भी Backlight नहीं मिलती है जिसके कारण हल्का ओर पतला मिल जाता है।

किसी भी प्रकार के Display में इन तीन चीज़ों का होना अति आवश्यक होता है पहला - डिस्प्ले को रोशनी देने के लिए एक लाईट जिससे Display को देखा जा सके, दूसरा - कलर्स,आपको डिस्प्ले में रंग दिखाइ देगी अगर रंग ही नहीं होंगे तो पूरा डिस्प्ले सफेद दिखेगा या काला, अतः डिस्प्ले में रंगों का होना बहुत जरूरी है.

Tft display (Thin Film Transister) होता है इसको LCD Display का नया वर्शन माना जाता है क्योंकि TFT डिस्प्ले दुसरे Displays के मुकाबले सस्ता मिलता है और इसकी मोटाई भी कुछ ज्यादा होने के वजह से मोबाईल के आकर में भी फर्क आ जाता है अतःइस डिस्प्ले का इस्तेमाल पहले के Smartphones और आजकल के सस्ते Mobiles में किया जाता है,

चूंकि यह डिस्प्ले थोडा सस्ते में मिल जाता है अतः इसमें कुछ खामियां भी है रंगों और क्वालिटी के हिसाब से, अगर जब कभी आप नया फ़ोन लेने जाएँ तो ये सुनिश्चित कर लें कि मोबाइल tft डिस्प्ले वाला ना हो, क्योकि इसमें आपको थोड़ा फीका और विडियो का अनुभव ठीक से नहीं ले पाएंगे, साथ ही ये डिस्प्ले जल्दी टूट जाता है।

आईपीएस एलसीडी ये एलसीडी का ही एक रूप है इसमें भी वही टेक्नोलॉजी काम करती है जो एलसीडी डिस्प्ले में करती थी, यह डिस्प्ले आज के इस दौर में Trend में है क्योंकि ये AMOLED display के मुकाबले सस्ते और रंगों को बहुत Natural दिखाते है,

जबकि AMOLED डिस्प्ले मे Colours ज्यादा बूस्टेड और Over Saturated रहता है अगर आप भी अपने मोबाइल में एक्यूरेट कलर्स देखना चाहते है तो आपको IPS LCD Display के साथ ही जाइये.

इस Display में भी एक Backlight होता है जिसके कारण सूर्य की तेज किरणों में भी इस Display को बिना किसी दिक्कत के क्लियर देख पाएंगे, और View Angle को बढ़ाया गया है अर्थात आप जब Smartphone को कुछ Tilt भी करते है तो ठीक से देख पायेंगे,

यह Display भी AMOLED के मुकाबले सस्ती ओर TFT Display से महंगा मिल जाता है और AMOLED से कुछ कम ओर TFT से थोड़ा मोटा रहता है जिसके कारण Smartphones भी थोड़े भारी हो जाते है.

इस डिस्प्ले का Down Point ये है कि ये Backlight Technology पर काम करता है जिससे Battery भी ज्यादा खर्च होती है ओर Black Colour को Black के बजाए थोड़ा Grey Colour में दिखाता है।

बहुत से डिस्प्ले के बारे में जानने के बाद भी बहुत से लोग इसी Confusion में होंगे कि कौन सी Types of mobile display screen वाला मोबाइल लें, अगर आपके दिमाग में ये सवाल है तो फ़िक्र मत कीजिये हम आपको आपके Use के According सही डिस्प्ले की जानकारी देंगे,

अगर 3000-4000Rs.के अंदरथोड़े सस्ते मोबाइल चाहिए तो आप tft डिस्प्ले ही लें क्योंकि इस Price में किसी और Display का विकल्प ही नहीं है इसमें भी आपको अच्छा Experince मिलेगा,आपकी Budget 10K से उपर है तो आप IPS LCD का चुनाव करें क्योंकि इस कीमत में आपको AMOLED Display मुश्किल से ही मिल पाता है.

25K के उपर का बजट होगा तो AMOLED, Super AMOLED और Retina Display वाला Smartphone ले सकते है क्योंकि ये सभी Battery की खपत को कम करता है और Vibrant Colour दिखाता है जो इंसानी आंखो को अत्यधिक प्रिय लगते है ये सभी Display आंखो के लिए भी सेहतमंद होते है।

अब बारी आती है Display को सुरक्षित रखने की, एक अच्छी डिस्प्ले स्क्रीन वाला फोन ही काफी नहीं है हमें यह भी देख लेना चाहिए कि फोन में कौन सा Protector Glass लगा है, Market में आपको बहुत सारे Glass मिल जाएंगे लेकिन आज हम सिर्फ Gorilla GlassProtector ग्लास के बारे में जानकारी देंगे जो काफी कठोर ओर सबसे ज्यादा यूज़ किया जाता है.

इसका यूज़ सबसे पहले 2007 में iPhone में किया गया था, Gorilla Glass बनाने वाली Company Corning यहकभीनहीं बोलती की हमारे Glass में Scratch नहीं पड़ेगा ये जोग्लासहै वो काफी हद तक आपके Display में Scratch आने से बचाती है लेकिन एक भी Scratch ना आए ऐसा Possible नहीं है,

हमें उम्मीद है की आपको इस लेख Mobile Display Types - IPS, Retina, and AMOLED in Hindiसे काफी उपयोगी जानकारी मिली होगी. आपको हमारा यह लेख कैसा लगा हमें Comment में जरुर बताएं, साथ ही अगर लेख पसंद आया हो तो इसे Social साइट्स और दोस्तों के साथ Share करना ना भूलें

tft display means in hindi price

New Delhi: The technology used in mobile displays in the modern day smartphones has progressed significantly. In the era of touchscreen  smartphones, the display technology has become one of its primary selling points, and certainly its most unique feature. Not only we want the touch screens to offer crisp text, vibrant images, blur-free video and enough brightness, we want them at low cost too.

For instance, HTC One uses Super LCD3 tech, in its 4.7in screen which gives a resolution of 1920 x 1080 pixels, with pixel density of 469 pixels per inch (ppi). This results in super display in terms of crispness and colour reproduction. HTC says the SLCD technology gives the phone better power management, improved viewing angles and is easier to produce.

Here we"ve rounded up all the important information about different mobile screen types below, so you"ll know what to look out for on your next phone.

The Thin film transistor liquid crystal display (TFT LCD) technology is the most common display technology used in mobile phones. A variant of liquid crystal display (LCD), the technology uses TFT technology to enhance image quality. It offers better image quality and higher resolutions as compared to earlier generation LCD displays.

IPS LCD Stands for In Plane Switching liquid Crystal Display. This technology offers better display quality as compared to the TFT-LCD display. The good part about IPS LCD is that it offers better viewing angles and consumes less power. Due to higher costs, it is found only on high-end smartphones. Apple uses a high resolution (640x960 pixels) version of IPS LCD in its iPhone 4, which is also called Retina Display.

Organic Light Emitting Diode (OLED) display technology is much better as compared to the LCD display technology because of its excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.

OLEDs are brighter than LEDs and do not require backlighting like LCDs. Since OLEDs do not require backlighting, they consume much less power than LCDs.

Since these display forms are easier to produce, they can be made to larger sizes. Because OLEDs are essentially plastics, they can be made into large, thin sheets.

AMOLED stands for Active Matrix Organic Light Emitting Diode. A step ahead of OLED screens, the AMOLED screens can control each pixel individuality while maintaining the properties of an OLED panel. AMOLED screens use a different subpixel arrangement which can reduce the image quality a bit.

AMOLED screens have all the attributes of an OLED display like excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.

Super AMOLED display technology is an advanced version of AMOLED display. Samsung uses this term for the AMOLED panels that they develop. Super AMOLED  screens are built with capacitive touch sensors on the display itself. Super AMOLED display is much more responsive than an AMOLED display. Samsung top-of-the-line Galaxy SII comes engineered with Super AMOLED display technology. Samsung has already took it"s SMOLED screen to next levels by developing Super AMOLED+, HD Super AMOLED+ and FHD Super AMOLED+ screens.

It is a name given by Apple to the high-resolution screen technology introduced on the iPhone 4 in June 2010. Something is a Retina Display when it offers a density of pixels above 163 pixels per inch. The company calls it the Retina display because its pixels cannot be individually identified by a human eye, thus rendering a super sharp display, more crisp text and more clear pictures.

Retina Display is designed to smooth the jagged edges of pixels are provide a higher-quality image than previously available on mobile devices. Apple claims that its resolution is so good that it makes it impossible for the human eye to distinguish individual pixels. Its effects shows up in text, images and videos.

Color boost is simply Moto"s marketing term for their new display. Although it now uses LCD displays, the company fine-tuned its panels to match the saturation of OLED displays while maintaining the higher performance of LCD. It"s somewhere in the middle ground.

tft display means in hindi price

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.

The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.

In-plane switching was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels at that time.

Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.

Most panels also support true 8-bit per channel color. These improvements came at the cost of a higher response time, initially about 50 ms. IPS panels were also extremely expensive.

IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.

In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.

It achieved pixel response which was fast for its time, wide viewing angles, and high contrast at the cost of brightness and color reproduction.Response Time Compensation) technologies.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.

New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.

Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.

The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).

With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.

The statements are applicable to Merck KGaA as well as its competitors JNC Corporation (formerly Chisso Corporation) and DIC (formerly Dainippon Ink & Chemicals). All three manufacturers have agreed not to introduce any acutely toxic or mutagenic liquid crystals to the market. They cover more than 90 percent of the global liquid crystal market. The remaining market share of liquid crystals, produced primarily in China, consists of older, patent-free substances from the three leading world producers and have already been tested for toxicity by them. As a result, they can also be considered non-toxic.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". 12 (1). IEEE Annals of the History of Computing: 60–73. Cite journal requires |journal= (help)

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.

tft display means in hindi price

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is thin relative to the plane of the device.substrate. A common substrate is glass, because the traditional application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer.

TFTs can be fabricated with a wide variety of semiconductor materials. Because it is naturally abundant and well understood, amorphous or polycrystalline silicon was historically used as the semiconductor layer. However, because of the low mobility of amorphous siliconcadmium selenide,metal oxides such as indium gallium zinc oxide (IGZO) or zinc oxide,organic semiconductors,carbon nanotubes,metal halide perovskites.

Because TFTs are grown on inert substrates, rather than on wafers, the semiconductor must be deposited in a dedicated process. A variety of techniques are used to deposit semiconductors in TFTs. These include chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering. The semiconductor can also be deposited from solution,printing

Some wide band gap semiconductors, most notable metal oxides, are optically transparent.electrodes, such as indium tin oxide (ITO), some TFT devices can be designed to be completely optically transparent.head-up displays (such as on a car windshield).The first solution-processed TTFTs, based on zinc oxide, were reported in 2003 by researchers at Oregon State University.Universidade Nova de Lisboa has produced the world"s first completely transparent TFT at room temperature.

The best known application of thin-film transistors is in TFT LCDs, an implementation of liquid-crystal display technology. Transistors are embedded within the panel itself, reducing crosstalk between pixels and improving image stability.

As of 2008LCD TVs and monitors use this technology. TFT panels are frequently used in digital radiography applications in general radiography. A TFT is used in both direct and indirect capturemedical radiography.

The most beneficial aspect of TFT technology is its use of a separate transistor for each pixel on the display. Because each transistor is small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. In 1966, T.P. Brody and H.E. Kunig at Westinghouse Electric fabricated indium arsenide (InAs) MOS TFTs in both depletion and enhancement modes.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard J. Lechner of RCA Laboratories in 1968.dynamic scattering LCD that used standard discrete MOSFETs, as TFT performance was not adequate at the time.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).electroluminescence (EL) in 1973, using CdSe.active-matrix liquid-crystal display (AM LCD) using CdSe in 1974, and then Brody coined the term "active matrix" in 1975.

A breakthrough in TFT research came with the development of the amorphous silicon (a-Si) TFT by P.G. le Comber, W.E. Spear and A. Ghaith at the University of Dundee in 1979. They reported the first functional TFT made from hydrogenated a-Si with a silicon nitride gate dielectric layer.research and development (R&D) of AM LCD panels based on a-Si TFTs in Japan.

By 1982, Pocket TVs based on AM LCD technology were developed in Japan.Fujitsu"s S. Kawai fabricated an a-Si dot-matrix display, and Canon"s Y. Okubo fabricated a-Si twisted nematic (TN) and guest-host LCD panels. In 1983, Toshiba"s K. Suzuki produced a-Si TFT arrays compatible with CMOS integrated circuits (ICs), Canon"s M. Sugata fabricated an a-Si color LCD panel, and a joint Sanyo and Sanritsu team including Mitsuhiro Yamasaki, S. Suhibuchi and Y. Sasaki fabricated a 3-inch a-SI color LCD TV.

The first commercial TFT-based AM LCD product was the 2.1-inch Epson ET-10Hitachi research team led by Akio Mimura demonstrated a low-temperature polycrystalline silicon (LTPS) process for fabricating n-channel TFTs on a silicon-on-insulator (SOI), at a relatively low temperature of 200°C.Hosiden research team led by T. Sunata in 1986 used a-Si TFTs to develop a 7-inch color AM LCD panel,Apple Computers.Sharp research team led by engineer T. Nagayasu used hydrogenated a-Si TFTs to demonstrate a 14-inch full-color LCD display,electronics industry that LCD would eventually replace cathode-ray tube (CRT) as the standard television display technology.notebook PCs.IBM Japan introduced a 12.1-inch color SVGA panel for the first commercial color laptop by IBM.

TFTs can also be made out of indium gallium zinc oxide (IGZO). TFT-LCDs with IGZO transistors first showed up in 2012, and were first manufactured by Sharp Corporation. IGZO allows for higher refresh rates and lower power consumption.polyimide substrate.

Brody, T. Peter (November 1984). "The Thin Film Transistor - A Late Flowering Bloom". IEEE Transactions on Electron Devices. 31 (11): 1614–1628. Bibcode:1984ITED...31.1614B. doi:10.1109/T-ED.1984.21762. S2CID 35904114.

Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard (2016-06-01). "Metal oxide semiconductor thin-film transistors for flexible electronics". Applied Physics Reviews. 3 (2): 021303. Bibcode:2016ApPRv...3b1303P. doi:10.1063/1.4953034.

Bonnassieux, Yvan; Brabec, Christoph J.; Cao, Yong; Carmichael, Tricia Breen; Chabinyc, Michael L.; Cheng, Kwang-Ting; Cho, Gyoujin; Chung, Anjung; Cobb, Corie L.; Distler, Andreas; Egelhaaf, Hans-Joachim (2021). "The 2021 flexible and printed electronics roadmap". Flexible and Printed Electronics. 6 (2): 023001. doi:10.1088/2058-8585/abf986. hdl:10754/669780. ISSN 2058-8585. S2CID 235288433.

Wager, John. OSU Engineers Create World"s First Transparent Transistor Archived 2007-09-15 at the Wayback Machine. College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, 2003. 29 July 2007.

Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Pereira, L. M. N.; Martins, R. F. P. (March 2005). "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature". Advanced Materials. 17 (5): 590–594. Bibcode:2005AdM....17..590F. doi:10.1002/adma.200400368. S2CID 137441513.

Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH‐GAIN InAs THIN‐FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi:10.1063/1.1754740. ISSN 0003-6951.

Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". IEEE Annals of the History of Computing. 12 (1): 60–73.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN 0026-8941.

Mimura, Akio; Oohayashi, M.; Ohue, M.; Ohwada, J.; Hosokawa, Y. (1986). "SOI TFT"s with directly contacted ITO". IEEE Electron Device Letters. 7 (2): 134–6. Bibcode:1986IEDL....7..134M. doi:10.1109/EDL.1986.26319. ISSN 0741-3106. S2CID 36089445.

Sunata, T.; Yukawa, T.; Miyake, K.; Matsushita, Y.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A large-area high-resolution active-matrix color LCD addressed by a-Si TFT"s". 33 (8): 1212–1217. Bibcode:1986ITED...33.1212S. doi:10.1109/T-ED.1986.22644. ISSN 0018-9383. S2CID 44190988.

Sunata, T.; Miyake, K.; Yasui, M.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A 640 × 400 pixel active-matrix LCD using a-Si TFT"s". IEEE Transactions on Electron Devices. 33 (8): 1218–21. Bibcode:1986ITED...33.1218S. doi:10.1109/T-ED.1986.22645. ISSN 0018-9383. S2CID 6356531.

Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference: 56–58. doi:10.1109/DISPL.1988.11274. S2CID 20817375.

tft display means in hindi price

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.

The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays.  We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.

These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.

Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.

These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.

Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.

Wider viewing angles are not always welcome or needed. Image you work on the airplane. The person sitting next to you always looking at your screen, it can be very uncomfortable. There are more expensive technologies to narrow the viewing angle on purpose to protect the privacy.

Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming

Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.

Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.

Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.

What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have budget leftover, you can also add touch screen functionality as most of the touch nowadays uses PCAP (Projective Capacitive) touch panel.

This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

tft display means in hindi price

Over time, the purpose of using mobile phones or Smartphones has changed. Comparatively, it has now become a basic necessity of every individual. Smartphone has dramatically transformed the lives of individuals. It has now become a mini-computer that everyone carries in their pocket. Instead, you can have multiple things at your fingertips in a few seconds. While there are plenty of things to look for, AMOLED vs OLED is also a part of it.

Before purchasing any Smartphone, everyone goes through a list of specifications. This list includes display type, screen size, battery backup, supported operating system, total internal memory, and many others. Today, we have brought a comprehensive study of the significant display technologies available nowadays.

This article will introduce you to AMOLED vs OLED display technologies. Then, we will discuss the properties of both display technologies, followed by the difference between AMOLED vs OLED.

It stands for Natural Light-Emitting Diode, a type of LED technique that utilises LEDs wherein the light is of organic molecules that cause the LEDs to shine brighter. These organic LEDs are in use to make what are thought to be the best display panels in the world.

When you make an OLED d